aite空调人工400客服电话
aite空调客服售后电话是多少:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
aite空调24小时专线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
aite空调售后服务维修号码
aite空调400客服售后维修客服热线24小时电话
维修费用透明:维修费用透明公开,无隐藏消费。我们会提前告知您维修所需费用,包括配件费用、人工费用等,让您放心选择我们的服务。
aite空调24小时维修上门服务
aite空调网点报修渠道
晋中市左权县、广西柳州市城中区、咸阳市旬邑县、汕尾市海丰县、梅州市丰顺县、齐齐哈尔市拜泉县、武汉市青山区
阜新市海州区、聊城市茌平区、广西河池市巴马瑶族自治县、鹤壁市浚县、洛阳市洛宁县、昌江黎族自治县乌烈镇、淮安市洪泽区、太原市万柏林区、西安市雁塔区、日照市五莲县
内蒙古呼伦贝尔市扎赉诺尔区、内蒙古兴安盟突泉县、衡阳市石鼓区、嘉峪关市峪泉镇、马鞍山市当涂县、郑州市登封市、通化市通化县
安康市汉阴县、商丘市永城市、内蒙古巴彦淖尔市乌拉特后旗、淮安市金湖县、赣州市龙南市、武汉市青山区、宁波市江北区、白沙黎族自治县牙叉镇、荆州市洪湖市、永州市江永县
朝阳市双塔区、楚雄大姚县、吉安市永新县、昌江黎族自治县乌烈镇、吕梁市中阳县、内蒙古呼和浩特市土默特左旗
嘉兴市秀洲区、天津市东丽区、运城市平陆县、双鸭山市宝山区、济宁市泗水县、宜春市奉新县、上饶市弋阳县、安庆市迎江区、宜春市高安市、大同市阳高县
福州市长乐区、遵义市赤水市、内蒙古兴安盟突泉县、东方市东河镇、黔南三都水族自治县、达州市宣汉县、万宁市和乐镇
黄山市黟县、佛山市高明区、赣州市寻乌县、焦作市博爱县、天津市和平区、大庆市让胡路区、南阳市桐柏县、宜昌市秭归县、内蒙古兴安盟突泉县、郑州市新密市
大庆市大同区、海东市平安区、内蒙古赤峰市喀喇沁旗、信阳市平桥区、连云港市灌云县
湛江市廉江市、广西崇左市龙州县、海东市互助土族自治县、张掖市甘州区、北京市怀柔区、宣城市郎溪县、西宁市城中区、文山广南县
三亚市海棠区、宣城市绩溪县、济南市槐荫区、黑河市嫩江市、广西南宁市兴宁区、大同市新荣区、南京市高淳区、揭阳市普宁市、常州市钟楼区、大理剑川县
广西北海市合浦县、宜春市奉新县、广西北海市海城区、洛阳市瀍河回族区、黄山市歙县
萍乡市芦溪县、广西河池市都安瑶族自治县、六盘水市钟山区、广西河池市环江毛南族自治县、济南市钢城区、宜春市上高县、临沧市耿马傣族佤族自治县、鸡西市鸡冠区、内江市资中县
德州市禹城市、东莞市常平镇、济南市商河县、三明市永安市、菏泽市鄄城县、眉山市青神县、黄山市歙县
温州市泰顺县、宁波市北仑区、三门峡市渑池县、中山市西区街道、新乡市获嘉县、肇庆市封开县
毕节市织金县、滁州市天长市、许昌市襄城县、资阳市乐至县、临高县博厚镇、中山市东升镇、甘南合作市、绵阳市梓潼县、临沂市临沭县、伊春市伊美区
遵义市习水县、江门市新会区、郴州市北湖区、五指山市通什、衢州市开化县、白沙黎族自治县邦溪镇
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】