金凯德锁防盗门400售后维修热线全国统一24小时服务热线
金凯德锁防盗门售后服务点电话号码电话预约:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
金凯德锁防盗门售后服务电话24小时人工电话多少(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
金凯德锁防盗门客服电话咨询
金凯德锁防盗门官方联系方式
服务团队严格遵守服务规范,统一着装,礼貌待人,展现专业形象。
金凯德锁防盗门全国售后网点查询热线
金凯德锁防盗门全国统一售后上门电话-维修电话24小时在线服务
文昌市昌洒镇、大同市左云县、广西玉林市博白县、琼海市阳江镇、达州市达川区、平顶山市新华区
陇南市成县、安康市岚皋县、阜阳市阜南县、常州市钟楼区、重庆市忠县
哈尔滨市延寿县、毕节市织金县、九江市彭泽县、焦作市温县、天津市西青区、大理剑川县、兰州市安宁区
双鸭山市宝山区、丽江市华坪县、长沙市雨花区、芜湖市鸠江区、榆林市定边县、开封市祥符区、张家界市永定区、焦作市马村区
屯昌县南吕镇、黄石市阳新县、南阳市桐柏县、保山市腾冲市、温州市鹿城区、潍坊市昌邑市、景德镇市乐平市、内蒙古鄂尔多斯市乌审旗
毕节市织金县、文昌市抱罗镇、成都市简阳市、阿坝藏族羌族自治州红原县、东莞市万江街道、广西南宁市隆安县
兰州市皋兰县、临夏广河县、吉安市安福县、沈阳市浑南区、西安市新城区、无锡市惠山区、萍乡市上栗县、龙岩市连城县、洛阳市老城区
大连市庄河市、徐州市泉山区、营口市盖州市、上海市松江区、广西柳州市融水苗族自治县、上海市青浦区、南充市顺庆区、咸阳市秦都区、武汉市硚口区、沈阳市和平区
恩施州恩施市、临沂市费县、七台河市新兴区、琼海市大路镇、新乡市牧野区、丹东市凤城市、景德镇市昌江区
太原市阳曲县、湘西州凤凰县、北京市延庆区、内蒙古锡林郭勒盟阿巴嘎旗、清远市佛冈县、宣城市绩溪县、内蒙古呼伦贝尔市满洲里市、广西玉林市陆川县
三门峡市义马市、鞍山市千山区、内蒙古乌海市海南区、中山市东凤镇、合肥市瑶海区
黑河市爱辉区、武汉市汉阳区、昭通市巧家县、合肥市长丰县、德阳市广汉市、遵义市正安县、济宁市微山县
广元市昭化区、东莞市清溪镇、铜仁市沿河土家族自治县、临沂市沂水县、宁德市柘荣县、宁波市北仑区、芜湖市镜湖区
三亚市崖州区、黔东南麻江县、本溪市南芬区、广西桂林市雁山区、达州市开江县、商丘市柘城县、楚雄楚雄市
厦门市翔安区、十堰市竹溪县、内蒙古兴安盟扎赉特旗、鞍山市台安县、淮北市烈山区、信阳市浉河区、武汉市东西湖区、汕尾市城区、曲靖市罗平县
通化市集安市、黄山市休宁县、海西蒙古族天峻县、万宁市三更罗镇、盐城市大丰区、广州市海珠区、庆阳市宁县、梅州市五华县、天津市蓟州区、荆州市江陵县
广西桂林市永福县、张掖市临泽县、重庆市潼南区、定安县雷鸣镇、南阳市桐柏县、黄南泽库县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】