美菱热水器快修管家
美菱热水器VIP维护热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
美菱热水器全国人工售后24小时售后服务热线电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
美菱热水器厂家总部售后电话24小时人工电话号码
美菱热水器总部400售后联系方式
建立售后服务专家库,遇到复杂问题可随时调用专家资源。
美菱热水器厂家总部售后维修全国报修
美菱热水器售后400通道
中山市石岐街道、朔州市右玉县、通化市东昌区、三门峡市湖滨区、泰安市泰山区
陇南市西和县、龙岩市永定区、盘锦市盘山县、信阳市商城县、郑州市上街区、延安市吴起县、阿坝藏族羌族自治州小金县、安庆市岳西县、临汾市永和县、内蒙古鄂尔多斯市鄂托克旗
昌江黎族自治县石碌镇、内蒙古包头市青山区、吉林市船营区、重庆市秀山县、德阳市绵竹市、安庆市宜秀区、延边图们市
金华市婺城区、宁德市古田县、鹰潭市余江区、丽水市松阳县、合肥市肥西县、南通市海安市、吕梁市交城县、上海市杨浦区
惠州市惠城区、儋州市和庆镇、广西玉林市玉州区、马鞍山市当涂县、西双版纳景洪市、临高县和舍镇、宜春市宜丰县
德州市宁津县、普洱市思茅区、玉溪市华宁县、济宁市汶上县、永州市零陵区、邵阳市绥宁县
齐齐哈尔市龙江县、平顶山市舞钢市、乐东黎族自治县尖峰镇、濮阳市濮阳县、忻州市偏关县、龙岩市武平县、梅州市丰顺县
中山市东凤镇、普洱市墨江哈尼族自治县、东莞市横沥镇、内蒙古包头市九原区、永州市冷水滩区、西宁市城东区、南平市延平区、万宁市东澳镇、三明市将乐县
南通市如皋市、上海市松江区、湖州市南浔区、杭州市下城区、南阳市南召县、内蒙古通辽市开鲁县
吉安市吉州区、玉树称多县、周口市沈丘县、泉州市惠安县、辽阳市文圣区、陇南市文县
黄山市徽州区、马鞍山市雨山区、齐齐哈尔市拜泉县、营口市鲅鱼圈区、甘孜色达县、宜春市樟树市、商丘市睢阳区
开封市兰考县、北京市大兴区、海东市民和回族土族自治县、临汾市蒲县、衢州市常山县、北京市延庆区、张掖市肃南裕固族自治县
晋城市泽州县、上海市青浦区、阳江市阳西县、赣州市瑞金市、南通市启东市、黔南平塘县、潍坊市高密市、永州市江永县、绵阳市北川羌族自治县
烟台市栖霞市、盐城市阜宁县、临高县临城镇、乐山市犍为县、西安市临潼区、乐东黎族自治县大安镇、广西桂林市全州县
宣城市宣州区、东莞市茶山镇、镇江市润州区、鹤岗市东山区、澄迈县文儒镇、邵阳市新邵县、辽源市东辽县、洛阳市洛龙区、铁岭市银州区
池州市东至县、广西防城港市上思县、六安市霍山县、泉州市永春县、成都市大邑县、临汾市永和县、商丘市夏邑县
朝阳市龙城区、四平市铁西区、东莞市谢岗镇、宁夏吴忠市盐池县、哈尔滨市呼兰区、南充市蓬安县、运城市河津市、葫芦岛市兴城市、杭州市建德市、内蒙古兴安盟科尔沁右翼中旗
中新网北京9月2日电(记者 吴涛)当人工智能的浪潮席卷全球,其背后的“燃料”——数据,正成为竞相争夺的战略资源。然而,并非所有数据都能加速AI的发展。一场从“海量数据”向“高质量数据集”的变革正在发生。
何为高质量数据集?
2024年12月,国家发展改革委、国家数据局等部门印发《关于促进数据产业高质量发展的指导意见》,首次明确提出“高质量数据集”概念,支持企业面向人工智能应用创新,开发高质量数据集,大力发展“数据即服务”“知识即服务”“模型即服务”等新业态。
近日发布的《高质量数据集建设指引》指出,大模型参数规模指数级增长与多模态能力的拓展,数据需求从“量级积累”转向“量质并重”。
官方数据显示,截至2025年6月,全国建设高质量数据集超3.5万个、总量超400PB;数据交易机构挂牌高质量数据集3364个,作为交易流通中的关键商品,累计交易额近40亿元,规模达246PB。
在近日举行的一场论坛上,中国信息通信研究院院长余晓晖表示,放眼全球,有大量的私域数据,在场景、行业、政府中,这部分数据能够释放出来,是构成高质量数据集非常重要的一个方向。
高质量数据集和AI发展相辅相成
因为AI大模型的训练会用到海量数据,所以,市场一直有观点认为,未来将无数据可用,或者不得不用大量的合成数据。在这种情况下,高质量数据集无疑成为数据流通的“硬通货”。
清华大学数字政府与治理研究院院长、教授张小劲表示,人工智能大模型走到哪里,高质量数据集就走到哪里,反之,高质量数据集走到哪里,人工智能就走到哪里,这是相辅相成的,是双轮驱动的格局。
中国工程院院士吴世忠指出,数据集建设的质量和安全,是大模型发展的生命线,要完善分级分类的数据安全制度,强化全流程的技术防护手段,筑牢防篡改的底层技术能力。在数据集建设中,还要主动融入中华优秀传统文化,避免模型成为利己主义的工具。
目前高质量数据集建设如火如荼,深圳市政务服务和数据管理局党组书记、局长周剑明在国家数据局官网发文分享,深圳市结合公共数据资源授权运营和可信数据空间建设探索,支持高质量公共数据和企业数据等融合应用,已在征信金融、气象、商保理赔等领域开展试点,取得较好成效。(完) 【编辑:于晓】