AIPU保险柜全国各网点售后服务客服电话
AIPU保险柜400客服售后维修上门附近电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
AIPU保险柜售后服务客服热线24小时电话全国(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
AIPU保险柜售后服务热线电话24小时
AIPU保险柜维修服务售后电话
维修服务紧急联系人制度,应对突发状况:我们为每位客户设立紧急联系人制度,确保在维修过程中遇到突发状况时,能够迅速与客户取得联系。
AIPU保险柜维修服务咨询
AIPU保险柜维修全国号码厂家总部400热线
遵义市湄潭县、汉中市宁强县、宁夏银川市金凤区、中山市古镇镇、东莞市高埗镇、丽水市云和县
屯昌县枫木镇、渭南市临渭区、杭州市滨江区、东莞市茶山镇、内蒙古呼和浩特市和林格尔县、北京市大兴区
福州市晋安区、忻州市神池县、黄冈市武穴市、上饶市余干县、长春市绿园区、伊春市大箐山县、滁州市全椒县
赣州市信丰县、广西梧州市岑溪市、信阳市潢川县、宣城市绩溪县、吉安市遂川县、韶关市始兴县
西宁市湟源县、江门市新会区、天津市东丽区、湘潭市湘潭县、吉林市桦甸市、中山市小榄镇、赣州市南康区、宿迁市宿城区
中山市南头镇、常州市天宁区、郴州市北湖区、澄迈县金江镇、东莞市大朗镇、吕梁市离石区
凉山西昌市、徐州市沛县、温州市文成县、齐齐哈尔市克东县、曲靖市宣威市、成都市简阳市、泉州市鲤城区
甘孜稻城县、荆州市江陵县、红河弥勒市、昌江黎族自治县乌烈镇、南昌市新建区、内蒙古鄂尔多斯市达拉特旗、宝鸡市陈仓区
鹤岗市兴安区、连云港市赣榆区、上海市闵行区、直辖县天门市、内蒙古赤峰市阿鲁科尔沁旗、金华市金东区、聊城市茌平区、大同市天镇县、常德市澧县
滁州市明光市、雅安市荥经县、枣庄市市中区、济宁市泗水县、株洲市渌口区、商丘市梁园区
阿坝藏族羌族自治州小金县、泸州市叙永县、吕梁市交口县、鹤岗市萝北县、马鞍山市含山县、广元市昭化区、延安市宝塔区、常德市桃源县、哈尔滨市道里区
池州市东至县、日照市五莲县、甘南夏河县、平顶山市叶县、宿州市砀山县、黔东南台江县、朝阳市凌源市
宜昌市秭归县、宜宾市兴文县、甘南合作市、鹤岗市兴安区、云浮市罗定市、阜阳市阜南县、成都市新津区
绍兴市柯桥区、抚州市黎川县、常德市临澧县、上饶市弋阳县、郴州市资兴市、扬州市邗江区
济宁市鱼台县、郴州市永兴县、凉山布拖县、邵阳市邵阳县、枣庄市峄城区、兰州市皋兰县、福州市闽清县、五指山市南圣、天津市河东区、深圳市龙岗区
成都市简阳市、哈尔滨市香坊区、湘西州花垣县、郑州市中原区、阜新市清河门区、贵阳市息烽县、乐山市马边彝族自治县、长春市德惠市、锦州市北镇市、昆明市呈贡区
大同市灵丘县、衢州市江山市、镇江市润州区、佛山市禅城区、西安市新城区、广西桂林市资源县、临沂市费县、宁夏固原市西吉县、深圳市光明区、兰州市皋兰县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】