400服务电话:400-1865-909(点击咨询)
英国冰箱网点查询系统
英国冰箱售后维修24小时客服热线全市网点
英国冰箱专业售后服务中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
英国冰箱维修400热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
英国冰箱预约客服
英国冰箱总部400服务中心网点
客服中心5分钟内响应,快速安排专业师傅上门服务。
设备回收服务:对于无法修复或维修成本过高的设备,我们提供设备回收服务,让您获得一定的回收价值。
英国冰箱人工售后热线
英国冰箱维修服务电话全国服务区域:
益阳市安化县、湘潭市湘乡市、恩施州建始县、果洛玛沁县、阿坝藏族羌族自治州小金县
宁夏固原市泾源县、怀化市麻阳苗族自治县、东方市天安乡、湘西州吉首市、中山市三角镇、吉林市永吉县、泉州市安溪县、济南市莱芜区、榆林市靖边县、曲靖市罗平县
北京市朝阳区、滁州市明光市、徐州市泉山区、郴州市嘉禾县、哈尔滨市依兰县、广西防城港市上思县、南平市顺昌县
广西桂林市叠彩区、葫芦岛市绥中县、惠州市惠阳区、成都市郫都区、咸宁市通山县、东方市东河镇、黄冈市团风县、中山市坦洲镇
乐东黎族自治县利国镇、洛阳市伊川县、鹰潭市贵溪市、福州市闽清县、儋州市雅星镇、西安市雁塔区、阳泉市平定县、郑州市巩义市、湘潭市湘潭县、阳江市阳东区
恩施州巴东县、鄂州市鄂城区、南平市光泽县、九江市濂溪区、衡阳市南岳区、眉山市青神县、吉林市舒兰市
内蒙古赤峰市巴林右旗、烟台市招远市、潍坊市坊子区、屯昌县南吕镇、松原市宁江区、阜新市清河门区、绥化市北林区
澄迈县中兴镇、盐城市东台市、烟台市莱州市、临汾市乡宁县、深圳市坪山区、内蒙古呼伦贝尔市额尔古纳市、昌江黎族自治县海尾镇、新乡市红旗区、上饶市玉山县
宁德市古田县、眉山市洪雅县、南昌市南昌县、甘孜巴塘县、威海市荣成市、广西北海市铁山港区、牡丹江市东宁市、岳阳市云溪区
内蒙古鄂尔多斯市杭锦旗、晋城市陵川县、安庆市宜秀区、青岛市即墨区、张掖市临泽县
淄博市博山区、信阳市潢川县、宜春市上高县、广西梧州市藤县、文昌市文教镇、郑州市上街区、北京市西城区、许昌市鄢陵县
成都市武侯区、海口市龙华区、吕梁市交口县、咸阳市杨陵区、七台河市新兴区、甘孜新龙县
大连市西岗区、惠州市惠阳区、湖州市德清县、平凉市静宁县、泉州市丰泽区、云浮市郁南县、九江市彭泽县
直辖县仙桃市、宁波市鄞州区、七台河市桃山区、郴州市临武县、黄山市黄山区、恩施州巴东县、葫芦岛市建昌县、庆阳市合水县、玉溪市易门县、潍坊市奎文区
大庆市萨尔图区、淮北市杜集区、临高县和舍镇、渭南市蒲城县、六安市舒城县、合肥市庐江县、黔东南麻江县
嘉峪关市新城镇、怀化市会同县、上饶市信州区、张掖市临泽县、运城市临猗县、玉树曲麻莱县、德阳市旌阳区、信阳市罗山县
杭州市富阳区、通化市梅河口市、内蒙古呼伦贝尔市阿荣旗、昆明市五华区、铜仁市沿河土家族自治县、朝阳市北票市、广西南宁市上林县、汕头市南澳县、随州市曾都区
十堰市郧西县、广西桂林市全州县、南阳市邓州市、宁波市慈溪市、焦作市山阳区、济宁市鱼台县、抚州市资溪县、福州市闽清县、文山麻栗坡县、保山市隆阳区
韶关市翁源县、酒泉市敦煌市、红河石屏县、内蒙古锡林郭勒盟锡林浩特市、毕节市赫章县、乐山市沙湾区、东莞市茶山镇、晋城市高平市
郑州市巩义市、宁夏吴忠市同心县、临汾市汾西县、成都市锦江区、抚顺市东洲区、青岛市平度市、沈阳市沈北新区
天水市清水县、滁州市定远县、金昌市金川区、恩施州鹤峰县、咸阳市兴平市
济南市长清区、商丘市永城市、吉安市青原区、定安县黄竹镇、济宁市兖州区、临沂市罗庄区、咸宁市嘉鱼县、广西南宁市邕宁区、平顶山市郏县、惠州市惠阳区
湘西州古丈县、张掖市高台县、洛阳市洛龙区、汉中市略阳县、齐齐哈尔市富裕县、淄博市博山区、昆明市宜良县、重庆市荣昌区、广元市苍溪县、楚雄姚安县
昆明市官渡区、宿州市泗县、扬州市宝应县、海口市秀英区、济南市历城区、临沂市沂南县、重庆市黔江区、广西桂林市灵川县
莆田市仙游县、晋城市陵川县、漯河市临颍县、福州市晋安区、吉安市青原区、滁州市南谯区、延边安图县、东方市板桥镇、内蒙古乌兰察布市集宁区
内蒙古锡林郭勒盟阿巴嘎旗、长治市壶关县、晋中市和顺县、广西百色市右江区、天津市西青区、德州市齐河县
芜湖市繁昌区、德州市德城区、吉安市峡江县、榆林市米脂县、上海市闵行区、宁德市柘荣县、池州市石台县
400服务电话:400-1865-909(点击咨询)
英国冰箱全国维修服务中心
英国冰箱全市维修服务网点
英国冰箱全市各区维修服务中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
英国冰箱售后维修客服服务电话全市网点(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
英国冰箱全国售后服务网点查询
英国冰箱网点维修服务
维修服务家电保险合作,降低风险:与保险公司合作,推出家电保险服务,降低客户因家电故障带来的经济损失风险。
维修服务家电保险直赔服务,省时省心:与保险公司合作,提供家电保险直赔服务,简化理赔流程,让客户省时省心。
英国冰箱官方维修网点
英国冰箱维修服务电话全国服务区域:
铜川市王益区、渭南市白水县、临汾市永和县、内蒙古赤峰市宁城县、海东市互助土族自治县、黄山市休宁县、宁夏银川市贺兰县、内蒙古包头市土默特右旗、吉林市永吉县、遵义市凤冈县
忻州市神池县、黄冈市麻城市、汉中市镇巴县、内蒙古锡林郭勒盟正镶白旗、邵阳市洞口县
屯昌县坡心镇、白沙黎族自治县七坊镇、昆明市呈贡区、海东市化隆回族自治县、佛山市南海区、临汾市蒲县、铜陵市铜官区、嘉兴市嘉善县、广西柳州市城中区、广西贺州市钟山县
洛阳市洛宁县、咸宁市嘉鱼县、齐齐哈尔市依安县、文昌市重兴镇、郑州市新郑市、西宁市城西区、泉州市洛江区、晋城市泽州县、大理洱源县
青岛市平度市、恩施州宣恩县、内蒙古兴安盟突泉县、湛江市徐闻县、南京市江宁区、广西贺州市富川瑶族自治县、哈尔滨市通河县、邵阳市双清区
东方市感城镇、潍坊市诸城市、平顶山市舞钢市、广西崇左市龙州县、沈阳市大东区、济宁市嘉祥县
株洲市石峰区、武汉市汉阳区、东莞市横沥镇、宿州市砀山县、信阳市浉河区、遵义市习水县
济南市历城区、漯河市源汇区、海南兴海县、中山市民众镇、鸡西市麻山区、延安市子长市
五指山市毛阳、绥化市绥棱县、嘉兴市秀洲区、南平市松溪县、新乡市卫辉市
泰州市靖江市、东莞市清溪镇、定西市陇西县、昆明市宜良县、嘉兴市秀洲区、北京市丰台区、海南贵南县、赣州市章贡区、岳阳市平江县
中山市大涌镇、赣州市信丰县、开封市杞县、白沙黎族自治县荣邦乡、天津市武清区、泸州市泸县、西安市阎良区
重庆市丰都县、淄博市张店区、绥化市明水县、揭阳市惠来县、黔东南黄平县、阜阳市颍上县、大同市广灵县
庆阳市正宁县、临沧市云县、湛江市麻章区、黔南罗甸县、鞍山市台安县、杭州市富阳区、太原市阳曲县、黄冈市团风县、内蒙古乌兰察布市商都县、龙岩市新罗区
澄迈县永发镇、运城市永济市、上海市松江区、绵阳市游仙区、昆明市禄劝彝族苗族自治县、营口市大石桥市、营口市站前区、北京市大兴区、济宁市邹城市、屯昌县坡心镇
泰安市东平县、天津市宁河区、宿迁市泗阳县、鞍山市铁东区、内蒙古包头市土默特右旗
安康市、曲靖市、来宾市、酒泉市、固原市、莆田市、昌都市、晋城市、淮安市、荆门市、蚌埠市、张家界市、日照市、哈密市、甘孜藏族自治州、张家口市、日喀则市、湘潭市、巴中市、益阳市
汉中市南郑区、咸阳市泾阳县、南京市江宁区、周口市西华县、文山广南县、海北海晏县、丽水市缙云县
榆林市定边县、鹤岗市南山区、绥化市海伦市、乐山市金口河区、内蒙古通辽市科尔沁左翼后旗、衡阳市祁东县、齐齐哈尔市龙沙区、滁州市天长市、哈尔滨市阿城区
广西河池市巴马瑶族自治县、晋中市灵石县、通化市通化县、广西梧州市蒙山县、成都市郫都区、绍兴市新昌县
襄阳市谷城县、佳木斯市富锦市、哈尔滨市通河县、邵阳市隆回县、驻马店市新蔡县、铁岭市清河区、哈尔滨市尚志市、济南市济阳区
聊城市莘县、新乡市获嘉县、广西柳州市柳北区、湛江市霞山区、晋中市太谷区、儋州市中和镇
吉安市万安县、本溪市南芬区、武汉市江夏区、琼海市大路镇、运城市芮城县、庆阳市环县
忻州市定襄县、铜陵市铜官区、太原市杏花岭区、文昌市蓬莱镇、上饶市玉山县、沈阳市于洪区、东莞市望牛墩镇、抚顺市望花区、广安市武胜县
牡丹江市林口县、黔东南丹寨县、鹤岗市南山区、凉山会东县、怀化市中方县、宿迁市沭阳县、丽江市古城区、甘孜白玉县、赣州市上犹县、阜新市海州区
内蒙古乌兰察布市卓资县、广西柳州市三江侗族自治县、大理洱源县、内蒙古乌兰察布市凉城县、咸阳市杨陵区、海东市乐都区、双鸭山市宝清县、七台河市桃山区、重庆市奉节县、太原市杏花岭区
晋城市泽州县、郴州市嘉禾县、长春市德惠市、朔州市怀仁市、辽阳市弓长岭区、广元市朝天区、黔南贵定县、临沧市凤庆县
肇庆市怀集县、三明市清流县、潍坊市潍城区、张家界市武陵源区、万宁市和乐镇、昆明市嵩明县、玉溪市易门县、榆林市神木市、宣城市宣州区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】