400服务电话:400-1865-909(点击咨询)
志高集成灶总部电话服务热线
志高集成灶人工维修热线
志高集成灶客服电话全国服务热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
志高集成灶统一客户热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
志高集成灶各24小时售后全国官方客服受理中心
志高集成灶售后维修服务中心客服
我们提供设备远程技术支持和在线帮助服务,随时解决您的问题。
预约时间灵活调整,适应客户需求:如果客户因故需要调整预约时间,我们提供灵活调整服务,尽量满足客户的个性化需求,确保服务顺利进行。
志高集成灶售后全国统一售后服务24小时
志高集成灶维修服务电话全国服务区域:
广州市南沙区、徐州市睢宁县、南平市延平区、延安市洛川县、临沂市莒南县
宁德市古田县、驻马店市遂平县、重庆市梁平区、乐东黎族自治县千家镇、安阳市滑县、清远市清城区、南昌市安义县、安康市岚皋县、临汾市古县、常德市澧县
湖州市吴兴区、开封市祥符区、咸宁市崇阳县、马鞍山市含山县、内蒙古赤峰市翁牛特旗、台州市三门县、焦作市孟州市、东方市感城镇、广元市剑阁县、安庆市宜秀区
枣庄市台儿庄区、吉安市安福县、汉中市西乡县、新乡市原阳县、酒泉市肃州区、深圳市盐田区
五指山市通什、广西贺州市钟山县、宁夏吴忠市盐池县、铜仁市万山区、珠海市斗门区、通化市梅河口市、临夏和政县
晋城市高平市、内蒙古包头市白云鄂博矿区、平凉市崇信县、丽水市莲都区、合肥市长丰县、商丘市梁园区、湛江市雷州市
马鞍山市含山县、阜阳市临泉县、黔东南丹寨县、巴中市通江县、怒江傈僳族自治州福贡县、襄阳市保康县
惠州市龙门县、德州市宁津县、汉中市略阳县、哈尔滨市方正县、铜仁市思南县
安庆市桐城市、哈尔滨市巴彦县、湖州市德清县、黔西南兴仁市、泰州市海陵区、东莞市中堂镇
乐山市夹江县、咸阳市秦都区、大理鹤庆县、中山市古镇镇、五指山市水满、运城市闻喜县、荆门市沙洋县、黄山市徽州区、荆州市公安县
信阳市潢川县、吉安市吉州区、台州市仙居县、盘锦市兴隆台区、陵水黎族自治县群英乡、滨州市邹平市、兰州市安宁区、文山砚山县、达州市大竹县、扬州市邗江区
商丘市宁陵县、雅安市石棉县、临沂市河东区、宁夏银川市兴庆区、东莞市石碣镇、普洱市景东彝族自治县、重庆市九龙坡区
绥化市青冈县、直辖县天门市、周口市商水县、枣庄市滕州市、大同市浑源县、东莞市高埗镇、西安市阎良区
黄冈市罗田县、景德镇市乐平市、内蒙古乌兰察布市商都县、广西梧州市万秀区、东莞市南城街道、绵阳市安州区、潍坊市坊子区、岳阳市岳阳楼区
西宁市湟中区、合肥市蜀山区、宁夏固原市泾源县、渭南市澄城县、白沙黎族自治县荣邦乡、岳阳市汨罗市、襄阳市谷城县、衡阳市衡山县
丽江市古城区、贵阳市云岩区、甘南迭部县、金华市金东区、定西市安定区、洛阳市洛龙区、东莞市樟木头镇、宁夏石嘴山市大武口区
苏州市相城区、鸡西市城子河区、嘉峪关市文殊镇、资阳市雁江区、临夏临夏市、齐齐哈尔市甘南县、哈尔滨市香坊区、长沙市雨花区、怀化市麻阳苗族自治县
大同市灵丘县、内蒙古兴安盟突泉县、淄博市博山区、西安市高陵区、安庆市宿松县、宜昌市长阳土家族自治县、荆州市监利市
河源市源城区、福州市连江县、安阳市北关区、烟台市蓬莱区、宣城市宣州区、赣州市大余县、万宁市后安镇、广州市海珠区、景德镇市乐平市
南阳市内乡县、昭通市彝良县、岳阳市岳阳县、南充市高坪区、扬州市邗江区
张家界市桑植县、商洛市洛南县、黔西南望谟县、定安县龙湖镇、宣城市旌德县
宁波市象山县、绥化市青冈县、宜昌市伍家岗区、潍坊市青州市、贵阳市观山湖区、晋中市灵石县、萍乡市莲花县
曲靖市沾益区、海南贵德县、汕尾市城区、南京市鼓楼区、铜仁市思南县、七台河市茄子河区、枣庄市山亭区
吕梁市兴县、青岛市平度市、中山市南朗镇、洛阳市瀍河回族区、岳阳市平江县、宜昌市秭归县、内蒙古锡林郭勒盟二连浩特市、大理巍山彝族回族自治县
长春市九台区、宣城市宣州区、绥化市青冈县、朝阳市龙城区、南通市海门区、新乡市凤泉区、本溪市本溪满族自治县、新余市渝水区
攀枝花市西区、怀化市沅陵县、广西河池市金城江区、南京市雨花台区、滁州市凤阳县、六安市霍山县、内蒙古呼和浩特市新城区、安庆市太湖县、中山市东凤镇、凉山喜德县
鸡西市鸡冠区、运城市永济市、吉林市船营区、荆州市石首市、重庆市巫溪县、安康市石泉县、昆明市安宁市、襄阳市襄州区、红河河口瑶族自治县、广元市青川县
400服务电话:400-1865-909(点击咨询)
志高集成灶维修中心售后服务号码
志高集成灶售后服务全国统一官方服务
志高集成灶24小时厂家全国24小时售后服务电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
志高集成灶总部400受理服务部网点电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
志高集成灶客户技术支持热线
志高集成灶售后服务点电话号码今日客服热线
环保包装材料,减少环境污染:我们采用环保包装材料,减少废弃物产生,为保护环境贡献一份力量。
维修服务一站式维修解决方案,无忧生活:提供从故障检测到维修完成的一站式解决方案,让客户享受无忧的家电维修体验。
志高集成灶全国售后服务网点
志高集成灶维修服务电话全国服务区域:
肇庆市广宁县、重庆市永川区、黔南都匀市、萍乡市上栗县、济宁市汶上县、临高县南宝镇、渭南市华阴市、佳木斯市同江市、抚州市宜黄县、洛阳市老城区
宁波市江北区、安顺市西秀区、惠州市惠东县、茂名市高州市、连云港市东海县、琼海市万泉镇、丽水市庆元县、亳州市蒙城县
上饶市鄱阳县、重庆市石柱土家族自治县、白沙黎族自治县七坊镇、德州市齐河县、日照市东港区、广西百色市那坡县、大同市广灵县、广西钦州市钦南区、莆田市仙游县
广西百色市乐业县、红河石屏县、肇庆市端州区、聊城市东阿县、营口市站前区、眉山市东坡区、湛江市遂溪县、自贡市荣县
烟台市牟平区、洛阳市洛龙区、鹰潭市贵溪市、儋州市新州镇、齐齐哈尔市讷河市、上饶市鄱阳县、宁德市福安市、宝鸡市渭滨区
淮安市淮阴区、长春市绿园区、湖州市德清县、乐山市峨边彝族自治县、重庆市巴南区、黄石市阳新县
太原市阳曲县、湘西州凤凰县、北京市延庆区、内蒙古锡林郭勒盟阿巴嘎旗、清远市佛冈县、宣城市绩溪县、内蒙古呼伦贝尔市满洲里市、广西玉林市陆川县
湘潭市湘乡市、漳州市长泰区、南阳市淅川县、广西河池市宜州区、楚雄禄丰市、广西梧州市苍梧县
内蒙古鄂尔多斯市杭锦旗、恩施州宣恩县、临夏永靖县、朔州市怀仁市、阜阳市太和县、甘南临潭县
张掖市临泽县、天津市宝坻区、淮北市烈山区、连云港市连云区、双鸭山市尖山区、晋中市左权县、文昌市重兴镇、咸阳市秦都区
商丘市夏邑县、商丘市宁陵县、延安市黄龙县、济南市章丘区、揭阳市揭东区、咸宁市赤壁市
延边图们市、运城市万荣县、宜昌市秭归县、广州市南沙区、广西柳州市鱼峰区、绥化市庆安县、蚌埠市蚌山区、内蒙古锡林郭勒盟二连浩特市、遵义市播州区
济南市天桥区、广西桂林市平乐县、青岛市市北区、永州市零陵区、三沙市西沙区、常州市天宁区、玉树囊谦县、郴州市汝城县
重庆市石柱土家族自治县、沈阳市皇姑区、内蒙古呼和浩特市新城区、松原市扶余市、台州市临海市、澄迈县大丰镇、随州市曾都区、运城市河津市、西安市未央区、苏州市张家港市
宁夏银川市永宁县、南平市建瓯市、黔西南望谟县、烟台市栖霞市、荆州市洪湖市、永州市江华瑶族自治县、黔西南晴隆县、商丘市柘城县、北京市西城区
内蒙古呼和浩特市和林格尔县、日照市莒县、嘉峪关市新城镇、安阳市龙安区、湘潭市湘潭县、普洱市景东彝族自治县、台州市天台县、广西梧州市岑溪市
聊城市茌平区、重庆市綦江区、珠海市斗门区、合肥市庐江县、东莞市南城街道、七台河市新兴区、上海市青浦区、宜宾市叙州区、聊城市临清市、大理南涧彝族自治县
陵水黎族自治县隆广镇、广西百色市田东县、重庆市涪陵区、重庆市江北区、湖州市安吉县、南阳市社旗县、九江市湖口县、酒泉市阿克塞哈萨克族自治县
九江市共青城市、宜春市上高县、广西来宾市忻城县、遵义市赤水市、宜昌市兴山县、漳州市平和县、黔东南丹寨县、汉中市略阳县、广元市昭化区
昆明市寻甸回族彝族自治县、陵水黎族自治县文罗镇、海东市民和回族土族自治县、黔东南天柱县、保亭黎族苗族自治县保城镇、天津市东丽区、定安县富文镇
丽水市云和县、内江市隆昌市、万宁市山根镇、绍兴市柯桥区、宁德市霞浦县
渭南市合阳县、黄冈市英山县、东莞市洪梅镇、澄迈县老城镇、保亭黎族苗族自治县保城镇、三亚市天涯区、吉林市磐石市、天水市麦积区
屯昌县西昌镇、甘孜白玉县、巴中市通江县、太原市娄烦县、泉州市安溪县
广州市越秀区、九江市武宁县、果洛久治县、昆明市富民县、德州市德城区、安康市白河县
万宁市万城镇、广元市苍溪县、长春市宽城区、嘉兴市秀洲区、池州市石台县、孝感市应城市、盐城市东台市、杭州市建德市、徐州市云龙区
鹤壁市浚县、安阳市北关区、濮阳市南乐县、屯昌县屯城镇、杭州市淳安县、遵义市仁怀市、南昌市南昌县、内蒙古通辽市库伦旗
常德市石门县、广西河池市东兰县、昌江黎族自治县石碌镇、菏泽市单县、荆州市松滋市、汕头市南澳县、安阳市殷都区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】