400服务电话:400-1865-909(点击咨询)
万利达热水器全国售后24小时客服维修服务热线
万利达热水器客服售后维修服务热线官方服务
万利达热水器人工服务24小时热线400热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
万利达热水器24h热线客服(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
万利达热水器400客服售后24小时售后服务热线电话
万利达热水器厂家总部售后客服24小时电话
维修进度实时查询,掌握最新动态:我们提供维修进度实时查询功能,客户可通过网站、APP等渠道随时查询维修进度和预计完成时间。
家电知识普及活动,提升公众认知:我们定期举办家电知识普及活动,通过讲座、展览等形式,向公众普及家电使用和维护知识,提升公众认知。
万利达热水器维修网站|全国客户24小时服务热线电话
万利达热水器维修服务电话全国服务区域:
运城市临猗县、遵义市赤水市、黄南尖扎县、扬州市高邮市、内蒙古鄂尔多斯市伊金霍洛旗、安顺市西秀区、吕梁市岚县、平凉市灵台县、儋州市光村镇、琼海市石壁镇
黔西南贞丰县、泸州市叙永县、洛阳市嵩县、天水市秦安县、文山砚山县、定安县龙门镇、嘉峪关市文殊镇、忻州市繁峙县、清远市清新区
九江市柴桑区、天水市张家川回族自治县、福州市台江区、湛江市廉江市、广西崇左市扶绥县、甘南夏河县、广西贺州市平桂区、文山富宁县、嘉峪关市新城镇、黔南三都水族自治县
枣庄市山亭区、济南市章丘区、黔东南雷山县、中山市三角镇、文山砚山县、红河建水县、毕节市赫章县、吕梁市岚县、衢州市衢江区、内蒙古乌海市海南区
楚雄南华县、青岛市崂山区、陇南市徽县、重庆市梁平区、荆州市石首市、白山市长白朝鲜族自治县、苏州市吴江区、运城市新绛县、延安市子长市、惠州市惠阳区
汕头市潮阳区、哈尔滨市道外区、中山市民众镇、烟台市牟平区、梅州市丰顺县、舟山市定海区、济宁市任城区
儋州市峨蔓镇、榆林市靖边县、金华市浦江县、广西桂林市灵川县、延安市富县
内蒙古巴彦淖尔市杭锦后旗、黔西南安龙县、红河开远市、吉林市桦甸市、茂名市高州市、龙岩市永定区、郑州市巩义市、信阳市光山县、四平市双辽市
果洛玛沁县、邵阳市邵东市、东莞市石碣镇、广西梧州市岑溪市、三明市宁化县
重庆市石柱土家族自治县、荆州市松滋市、大同市新荣区、广西梧州市万秀区、松原市长岭县
怀化市麻阳苗族自治县、中山市大涌镇、淮安市清江浦区、大同市广灵县、乐东黎族自治县志仲镇、淮南市潘集区、赣州市信丰县、内蒙古通辽市科尔沁左翼后旗
临汾市汾西县、汉中市佛坪县、哈尔滨市双城区、龙岩市上杭县、赣州市寻乌县、中山市港口镇
常州市金坛区、株洲市炎陵县、琼海市龙江镇、佳木斯市桦川县、滁州市定远县、长治市壶关县、哈尔滨市延寿县、绵阳市安州区、铁岭市银州区
雅安市天全县、佛山市顺德区、烟台市蓬莱区、昭通市昭阳区、宁波市宁海县、青岛市平度市
江门市新会区、亳州市谯城区、汕尾市海丰县、威海市乳山市、定安县雷鸣镇、枣庄市峄城区、潮州市湘桥区、中山市民众镇
忻州市定襄县、铜陵市铜官区、太原市杏花岭区、文昌市蓬莱镇、上饶市玉山县、沈阳市于洪区、东莞市望牛墩镇、抚顺市望花区、广安市武胜县
乐东黎族自治县千家镇、陇南市两当县、潍坊市寒亭区、景德镇市昌江区、齐齐哈尔市铁锋区、延边珲春市
临汾市古县、运城市万荣县、衡阳市衡南县、盐城市响水县、临沂市平邑县、白沙黎族自治县南开乡、酒泉市瓜州县、淄博市淄川区、宝鸡市麟游县
广西玉林市陆川县、榆林市靖边县、宁夏吴忠市同心县、运城市绛县、西宁市城西区
永州市冷水滩区、荆门市京山市、嘉兴市秀洲区、怒江傈僳族自治州泸水市、内蒙古鄂尔多斯市乌审旗、青岛市市南区、淄博市沂源县、万宁市三更罗镇、五指山市番阳、运城市盐湖区
黄冈市黄州区、海南同德县、郴州市苏仙区、雅安市荥经县、乐山市五通桥区、广西贵港市平南县、金华市磐安县
中山市古镇镇、营口市站前区、陵水黎族自治县文罗镇、伊春市金林区、佳木斯市汤原县、临夏康乐县、遂宁市蓬溪县
新乡市卫辉市、南平市建阳区、曲靖市沾益区、玉树囊谦县、资阳市安岳县、襄阳市宜城市、南昌市东湖区、咸阳市永寿县
乐山市马边彝族自治县、内蒙古兴安盟乌兰浩特市、天津市津南区、甘孜乡城县、吉安市青原区、大理宾川县、白城市大安市
淮安市淮阴区、黄石市黄石港区、楚雄姚安县、抚州市金溪县、榆林市定边县、晋中市祁县、襄阳市保康县、黔南龙里县、深圳市福田区
抚州市黎川县、运城市万荣县、景德镇市乐平市、内蒙古呼和浩特市回民区、遵义市习水县、安康市汉滨区、十堰市竹溪县、通化市辉南县、西安市鄠邑区、池州市东至县
昭通市鲁甸县、凉山会东县、上海市青浦区、宜昌市枝江市、吉安市庐陵新区
400服务电话:400-1865-909(点击咨询)
万利达热水器全国售后网点查询热线
万利达热水器400客服售后务24小时服务热线电话
万利达热水器厂售后服务热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
万利达热水器售后服务24小时服务热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
万利达热水器24小时厂家维修上门附近电话
万利达热水器客户支持热线
维修服务维修师傅定期培训,提升技能:定期组织维修师傅参加专业培训,提升他们的专业技能和服务水平,确保为客户提供优质服务。
维修服务家电安全使用培训,保障安全:为客户提供家电安全使用培训,讲解家电使用中的安全注意事项和防范措施,保障客户安全。
万利达热水器24小时售服热线
万利达热水器维修服务电话全国服务区域:
三门峡市陕州区、吉安市永丰县、鸡西市鸡东县、丽江市宁蒗彝族自治县、东方市天安乡
西安市碑林区、甘孜巴塘县、莆田市荔城区、东方市大田镇、张家界市慈利县
巴中市恩阳区、内蒙古赤峰市巴林左旗、广西桂林市恭城瑶族自治县、北京市通州区、广西梧州市万秀区、运城市盐湖区、台州市玉环市
广西柳州市融水苗族自治县、三门峡市义马市、遵义市赤水市、衡阳市蒸湘区、泰州市海陵区、文昌市抱罗镇、儋州市兰洋镇、周口市项城市、临高县加来镇
铜仁市松桃苗族自治县、湛江市遂溪县、盐城市盐都区、汉中市城固县、荆州市荆州区、宜昌市长阳土家族自治县、武威市凉州区、孝感市汉川市、安庆市潜山市、南充市营山县
重庆市武隆区、中山市南区街道、宝鸡市麟游县、芜湖市弋江区、西安市长安区、雅安市宝兴县、广西桂林市象山区、曲靖市富源县、德州市禹城市
宿州市砀山县、广西玉林市北流市、宁夏银川市金凤区、郴州市嘉禾县、抚州市南城县、池州市石台县
凉山昭觉县、金华市武义县、衢州市柯城区、东方市天安乡、韶关市乐昌市、嘉兴市海盐县、葫芦岛市建昌县、牡丹江市阳明区、怀化市溆浦县、沈阳市和平区
洛阳市孟津区、黔东南从江县、中山市石岐街道、兰州市皋兰县、清远市连州市、扬州市邗江区、洛阳市栾川县、赣州市章贡区
西安市莲湖区、锦州市古塔区、佳木斯市桦南县、东莞市桥头镇、吉安市井冈山市、宜宾市珙县、广西来宾市金秀瑶族自治县、深圳市光明区
伊春市铁力市、金华市兰溪市、宣城市广德市、宿州市泗县、红河红河县、抚州市南城县
商洛市柞水县、汕尾市陆河县、杭州市萧山区、杭州市拱墅区、保山市昌宁县、广西玉林市北流市、黔南荔波县、临高县加来镇
宜宾市江安县、焦作市修武县、南充市南部县、十堰市房县、临沂市河东区、衢州市常山县
武威市天祝藏族自治县、佳木斯市同江市、乐山市峨边彝族自治县、临高县加来镇、内蒙古赤峰市巴林左旗、广西柳州市城中区、常德市澧县、信阳市固始县
万宁市东澳镇、焦作市武陟县、遂宁市船山区、揭阳市普宁市、南京市雨花台区、松原市扶余市、甘孜道孚县、南京市浦口区、惠州市博罗县
安阳市滑县、宜春市铜鼓县、莆田市涵江区、贵阳市花溪区、益阳市安化县、商洛市洛南县、赣州市定南县、本溪市本溪满族自治县、漳州市龙文区
中山市东升镇、哈尔滨市通河县、阳江市阳东区、广州市海珠区、常德市石门县、惠州市龙门县、衡阳市祁东县、湘潭市岳塘区
遵义市赤水市、红河河口瑶族自治县、乐山市犍为县、武汉市江汉区、乐东黎族自治县大安镇、大兴安岭地区松岭区、潮州市湘桥区、铜仁市沿河土家族自治县、毕节市黔西市、大理巍山彝族回族自治县
海西蒙古族天峻县、周口市川汇区、自贡市荣县、内蒙古巴彦淖尔市磴口县、黄冈市黄州区、抚州市资溪县、红河弥勒市、铁岭市清河区、宁夏吴忠市红寺堡区、株洲市渌口区
兰州市安宁区、张家界市武陵源区、绍兴市越城区、绵阳市安州区、甘南碌曲县
哈尔滨市依兰县、德州市庆云县、蚌埠市蚌山区、内蒙古鄂尔多斯市东胜区、朝阳市凌源市、宁波市鄞州区、德阳市什邡市、雅安市雨城区、成都市蒲江县、临高县新盈镇
泸州市龙马潭区、自贡市沿滩区、广西柳州市融安县、黔东南雷山县、宁德市柘荣县、资阳市安岳县、黔东南凯里市、蚌埠市禹会区、信阳市罗山县
太原市阳曲县、西宁市城北区、长春市农安县、庆阳市华池县、定安县新竹镇
平顶山市汝州市、广州市越秀区、定安县定城镇、遵义市凤冈县、咸宁市嘉鱼县、惠州市惠东县、晋中市和顺县、曲靖市师宗县、玉树曲麻莱县、凉山雷波县
屯昌县南吕镇、中山市古镇镇、烟台市蓬莱区、邵阳市洞口县、聊城市冠县
昭通市威信县、咸阳市永寿县、南京市高淳区、孝感市应城市、巴中市恩阳区、昆明市禄劝彝族苗族自治县、广西河池市罗城仫佬族自治县、深圳市盐田区、宜春市樟树市、忻州市神池县
福州市仓山区、黑河市嫩江市、宿州市泗县、上饶市万年县、枣庄市滕州市、新乡市凤泉区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】