TOKRE指纹锁维修服务网点
TOKRE指纹锁紧急热线客服:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
TOKRE指纹锁售后服务热线及网点信息概览(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
TOKRE指纹锁售后服务维修中心电话地址
TOKRE指纹锁官方各全国统一售后24小时客服电话
维修服务绿色维修技术,环保节能:采用绿色维修技术,减少维修过程中的能耗和污染,推动环保节能理念在维修服务中的实践。
TOKRE指纹锁全国上门维修热线
TOKRE指纹锁服务预约通道
广西贵港市覃塘区、衢州市衢江区、昌江黎族自治县乌烈镇、济南市济阳区、丽水市松阳县、长春市农安县、衡阳市衡南县、武汉市新洲区、西宁市城中区
汉中市佛坪县、焦作市武陟县、琼海市阳江镇、广西桂林市雁山区、益阳市桃江县、德宏傣族景颇族自治州瑞丽市、安庆市大观区、宁夏固原市彭阳县、福州市闽侯县
萍乡市安源区、宜春市宜丰县、襄阳市保康县、五指山市毛阳、济宁市曲阜市、深圳市南山区、宣城市广德市、阿坝藏族羌族自治州黑水县、内蒙古赤峰市松山区
万宁市后安镇、广西崇左市天等县、内蒙古巴彦淖尔市杭锦后旗、松原市扶余市、遂宁市安居区
无锡市滨湖区、惠州市博罗县、上海市闵行区、南昌市安义县、内蒙古包头市石拐区、武汉市黄陂区、襄阳市老河口市
广安市前锋区、常德市石门县、重庆市巫山县、重庆市潼南区、晋城市沁水县、抚州市金溪县
佳木斯市桦南县、江门市台山市、安顺市平坝区、扬州市广陵区、广西贺州市富川瑶族自治县、齐齐哈尔市铁锋区
襄阳市襄城区、甘孜色达县、衡阳市蒸湘区、咸阳市三原县、平顶山市舞钢市、西宁市城中区、雅安市雨城区、内蒙古锡林郭勒盟苏尼特右旗、安庆市桐城市
潍坊市安丘市、黔东南凯里市、甘孜雅江县、抚顺市新抚区、大连市庄河市、泰州市靖江市、晋中市灵石县、泰州市姜堰区、大庆市大同区
肇庆市封开县、运城市盐湖区、广西梧州市蒙山县、内蒙古赤峰市林西县、北京市大兴区、金昌市永昌县、南京市雨花台区
宜昌市夷陵区、内蒙古锡林郭勒盟苏尼特左旗、晋中市平遥县、上饶市德兴市、临沧市耿马傣族佤族自治县、阿坝藏族羌族自治州理县、绍兴市越城区
杭州市上城区、内蒙古兴安盟突泉县、晋中市和顺县、永州市江华瑶族自治县、忻州市五寨县、厦门市集美区、凉山普格县、韶关市仁化县、三明市三元区
雅安市雨城区、肇庆市端州区、内蒙古乌兰察布市化德县、厦门市湖里区、丽水市松阳县、安庆市太湖县、宜昌市宜都市
长治市潞城区、东莞市桥头镇、宜宾市珙县、内蒙古巴彦淖尔市乌拉特前旗、三明市将乐县、河源市紫金县、阜新市太平区、黄冈市麻城市、临沂市罗庄区
黔南瓮安县、芜湖市弋江区、文山丘北县、赣州市石城县、屯昌县新兴镇
三明市大田县、汉中市洋县、温州市平阳县、新乡市获嘉县、海南贵南县、荆州市公安县、绵阳市梓潼县、朔州市平鲁区
广西梧州市苍梧县、咸阳市彬州市、白银市景泰县、徐州市睢宁县、临汾市大宁县、佳木斯市前进区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】