顾杰保险柜维修服务上门24小时网点咨询
顾杰保险柜全国报修400服务电话热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
顾杰保险柜售后服务用户服务电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
顾杰保险柜全国统一网点咨询热线
顾杰保险柜24小时统一热线
维修服务灵活支付方式,便捷高效:提供多种灵活的支付方式,包括现金、银行卡、移动支付等,满足客户的不同支付需求,提升支付便捷性。
顾杰保险柜总部400售后服务网点热线号码查询
顾杰保险柜总部400售后电话24小时报修热线
郑州市中原区、广西百色市田林县、乐东黎族自治县千家镇、肇庆市怀集县、阜阳市阜南县、澄迈县金江镇、内蒙古赤峰市敖汉旗、安庆市大观区、东莞市中堂镇
张掖市临泽县、九江市湖口县、西安市新城区、延安市甘泉县、广西崇左市天等县、马鞍山市雨山区、德州市德城区、大庆市萨尔图区、郑州市二七区、衡阳市石鼓区
宜昌市五峰土家族自治县、甘南卓尼县、宁夏石嘴山市惠农区、万宁市龙滚镇、营口市鲅鱼圈区、吉林市丰满区、安庆市怀宁县、盘锦市盘山县、凉山金阳县
徐州市邳州市、甘南卓尼县、铜仁市江口县、乐东黎族自治县万冲镇、漯河市源汇区、辽源市东辽县、池州市贵池区、安康市宁陕县
合肥市肥东县、咸阳市旬邑县、白银市靖远县、阿坝藏族羌族自治州松潘县、十堰市丹江口市、本溪市溪湖区
武汉市东西湖区、迪庆维西傈僳族自治县、巴中市恩阳区、遵义市桐梓县、天水市秦州区、淮北市相山区、广西贵港市港北区、忻州市五寨县、贵阳市云岩区、儋州市东成镇
焦作市修武县、新乡市辉县市、广西梧州市藤县、内蒙古通辽市科尔沁左翼中旗、湘西州龙山县、甘南合作市、海南兴海县、汕头市澄海区
襄阳市樊城区、西安市雁塔区、常德市汉寿县、武威市古浪县、延安市延川县、广西南宁市宾阳县、广西桂林市临桂区、铜仁市万山区、内蒙古乌海市海南区、荆门市东宝区
韶关市新丰县、红河泸西县、周口市淮阳区、广西南宁市兴宁区、澄迈县文儒镇、白沙黎族自治县邦溪镇、海西蒙古族都兰县、永州市零陵区
汉中市南郑区、咸阳市泾阳县、南京市江宁区、周口市西华县、文山广南县、海北海晏县、丽水市缙云县
淮安市洪泽区、鞍山市铁东区、镇江市句容市、雅安市雨城区、连云港市海州区、定西市临洮县
湛江市霞山区、泉州市惠安县、延边图们市、东莞市万江街道、庆阳市庆城县、临汾市古县、咸阳市乾县、宜昌市当阳市、广西崇左市凭祥市
泰州市高港区、九江市永修县、天津市河东区、成都市郫都区、黔西南册亨县、济南市市中区、陵水黎族自治县群英乡、宜春市宜丰县、大连市沙河口区、佳木斯市同江市
广西桂林市平乐县、新乡市原阳县、成都市金堂县、黔西南普安县、宁夏固原市泾源县、漳州市东山县、淄博市周村区、怒江傈僳族自治州福贡县、佛山市顺德区
北京市顺义区、营口市站前区、福州市平潭县、娄底市新化县、宁夏银川市永宁县、大理弥渡县、济宁市金乡县、恩施州来凤县
广西河池市都安瑶族自治县、内蒙古通辽市库伦旗、红河石屏县、合肥市蜀山区、安康市宁陕县、郴州市宜章县、广西梧州市蒙山县、岳阳市临湘市、辽阳市灯塔市、吉安市新干县
郑州市新密市、大庆市龙凤区、延安市延川县、铁岭市西丰县、上海市金山区、贵阳市开阳县、赣州市定南县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】