400服务电话:400-1865-909(点击咨询)
曦筱茵指纹锁总部客服预约登记电话
曦筱茵指纹锁客服电话全国服务电话
曦筱茵指纹锁热线服务咨询:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
曦筱茵指纹锁人工售后上门(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
曦筱茵指纹锁400客服售后维修电话24小时服务
曦筱茵指纹锁维修服务热线是多少
维修服务远程故障诊断,减少上门次数:对于部分故障,提供远程故障诊断服务,通过视频通话等方式指导客户操作,减少上门维修次数。
全国联保无忧:高品质配件享受全国联保,让您维修无忧。
曦筱茵指纹锁全国上门客服热线
曦筱茵指纹锁维修服务电话全国服务区域:
宜宾市兴文县、上海市嘉定区、湛江市吴川市、信阳市浉河区、抚顺市抚顺县、果洛甘德县
遵义市凤冈县、湛江市遂溪县、西安市长安区、忻州市神池县、延边敦化市、周口市项城市、信阳市淮滨县、乐东黎族自治县尖峰镇、忻州市忻府区
孝感市云梦县、岳阳市岳阳县、玉树治多县、广西防城港市港口区、文昌市公坡镇、本溪市溪湖区
安庆市大观区、抚顺市清原满族自治县、沈阳市于洪区、内蒙古阿拉善盟阿拉善右旗、内江市市中区、孝感市大悟县
西安市周至县、中山市小榄镇、自贡市大安区、芜湖市繁昌区、海南贵德县、河源市源城区、许昌市长葛市
洛阳市涧西区、上海市青浦区、海南同德县、威海市荣成市、攀枝花市西区、屯昌县坡心镇
平顶山市石龙区、儋州市大成镇、普洱市思茅区、济南市莱芜区、陵水黎族自治县提蒙乡、信阳市息县、烟台市莱阳市、万宁市东澳镇、绍兴市上虞区
台州市玉环市、徐州市新沂市、陵水黎族自治县英州镇、重庆市渝北区、乐东黎族自治县万冲镇、东莞市石龙镇
杭州市淳安县、安康市岚皋县、怀化市沅陵县、亳州市蒙城县、安庆市宿松县、定西市陇西县、文昌市文城镇、烟台市莱山区、淮北市烈山区
曲靖市富源县、株洲市渌口区、晋中市灵石县、重庆市荣昌区、海东市循化撒拉族自治县、松原市扶余市、大同市云州区、大庆市肇源县、西安市新城区
红河开远市、随州市随县、内蒙古阿拉善盟额济纳旗、凉山会东县、孝感市应城市、文昌市东路镇、五指山市水满、内蒙古乌兰察布市卓资县、锦州市义县、常德市汉寿县
池州市东至县、日照市五莲县、甘南夏河县、平顶山市叶县、宿州市砀山县、黔东南台江县、朝阳市凌源市
潮州市潮安区、青岛市平度市、太原市清徐县、三明市三元区、河源市源城区、聊城市茌平区、北京市延庆区、商洛市镇安县、马鞍山市当涂县
太原市小店区、潮州市湘桥区、宁德市屏南县、鞍山市海城市、白沙黎族自治县邦溪镇
常州市武进区、酒泉市阿克塞哈萨克族自治县、大兴安岭地区漠河市、海口市美兰区、临高县博厚镇、蚌埠市淮上区、盘锦市大洼区、杭州市淳安县
儋州市雅星镇、平顶山市舞钢市、鹤壁市鹤山区、铜仁市德江县、白山市江源区、渭南市临渭区、咸阳市秦都区、咸宁市咸安区、太原市清徐县
吕梁市离石区、荆门市钟祥市、张掖市肃南裕固族自治县、滨州市滨城区、内蒙古巴彦淖尔市临河区、信阳市罗山县、楚雄大姚县、七台河市新兴区、内蒙古鄂尔多斯市鄂托克旗
商洛市丹凤县、果洛甘德县、万宁市南桥镇、菏泽市牡丹区、信阳市光山县
台州市玉环市、宁德市柘荣县、广州市天河区、鸡西市鸡东县、自贡市荣县、清远市阳山县
广西河池市都安瑶族自治县、内蒙古通辽市库伦旗、红河石屏县、合肥市蜀山区、安康市宁陕县、郴州市宜章县、广西梧州市蒙山县、岳阳市临湘市、辽阳市灯塔市、吉安市新干县
咸阳市秦都区、茂名市茂南区、儋州市东成镇、抚州市乐安县、周口市项城市
太原市古交市、太原市迎泽区、中山市五桂山街道、昆明市呈贡区、泉州市洛江区、恩施州宣恩县、平顶山市宝丰县、澄迈县老城镇
新乡市牧野区、周口市鹿邑县、德州市禹城市、内蒙古通辽市科尔沁左翼后旗、黄山市屯溪区、陇南市礼县、甘孜道孚县、甘孜康定市、梅州市五华县
惠州市龙门县、内蒙古锡林郭勒盟苏尼特右旗、陇南市西和县、广西梧州市苍梧县、南京市建邺区、新乡市红旗区、永州市蓝山县、广西南宁市隆安县、咸宁市嘉鱼县
乐山市峨眉山市、内蒙古鄂尔多斯市东胜区、文昌市东路镇、潍坊市潍城区、娄底市双峰县
内蒙古鄂尔多斯市准格尔旗、临夏临夏市、毕节市纳雍县、葫芦岛市南票区、鞍山市台安县、甘南合作市、温州市泰顺县、枣庄市山亭区、阜阳市颍上县
三门峡市渑池县、张掖市临泽县、儋州市王五镇、雅安市石棉县、陵水黎族自治县黎安镇、临汾市浮山县、宁德市周宁县、宝鸡市扶风县、玉树囊谦县、甘南卓尼县
400服务电话:400-1865-909(点击咨询)
曦筱茵指纹锁售后24小时维修电话预约
曦筱茵指纹锁售后维修电话|全国统一400报修客户热线
曦筱茵指纹锁24小时网点维修中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
曦筱茵指纹锁全国人工售后客户服务热线电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
曦筱茵指纹锁服务全国服务热线
曦筱茵指纹锁售后热线客服
维修服务社区宣传栏,普及知识:在社区内设置宣传栏,定期更新家电维修、保养、安全使用等知识,提升居民家电使用意识。
维修过程客户监督:在维修过程中,您可以随时监督维修过程,确保维修过程符合您的要求。
曦筱茵指纹锁厂家总部售后服务电话热线
曦筱茵指纹锁维修服务电话全国服务区域:
武汉市新洲区、泰安市东平县、南昌市西湖区、莆田市仙游县、宣城市广德市、南京市溧水区、六安市霍邱县、儋州市大成镇、内蒙古赤峰市林西县
济南市莱芜区、黔西南安龙县、内蒙古包头市九原区、无锡市宜兴市、广西桂林市恭城瑶族自治县、舟山市定海区、平顶山市叶县、吉林市永吉县
怀化市会同县、朔州市朔城区、咸阳市武功县、宁夏中卫市中宁县、池州市贵池区、南通市海安市、哈尔滨市尚志市、忻州市保德县、黔西南册亨县、临沧市耿马傣族佤族自治县
襄阳市保康县、朔州市右玉县、济南市章丘区、铜仁市玉屏侗族自治县、金华市磐安县、甘孜白玉县
驻马店市上蔡县、郑州市金水区、新乡市长垣市、果洛玛多县、驻马店市平舆县、孝感市安陆市、淮安市淮阴区、天津市和平区、驻马店市汝南县、铜仁市江口县
上海市黄浦区、庆阳市宁县、泰州市兴化市、延安市延川县、开封市尉氏县、日照市莒县、周口市商水县
吕梁市离石区、广西百色市右江区、文昌市重兴镇、常德市石门县、保山市施甸县、陇南市礼县、宜宾市江安县
无锡市江阴市、东方市三家镇、烟台市招远市、杭州市淳安县、甘孜道孚县、邵阳市新邵县、德宏傣族景颇族自治州陇川县、中山市中山港街道、武汉市江岸区
丹东市东港市、常州市武进区、甘南合作市、绍兴市越城区、常州市金坛区、商洛市洛南县、四平市双辽市
六安市霍邱县、琼海市博鳌镇、海东市乐都区、宜昌市远安县、清远市佛冈县、榆林市佳县、济宁市嘉祥县、万宁市北大镇、天津市静海区
运城市平陆县、绥化市北林区、琼海市嘉积镇、杭州市上城区、宁夏中卫市中宁县、襄阳市襄州区、宜宾市南溪区、潍坊市昌乐县、宁夏石嘴山市大武口区
通化市东昌区、黄冈市黄梅县、红河建水县、长沙市望城区、莆田市荔城区、蚌埠市固镇县、杭州市桐庐县、东方市天安乡、广西南宁市兴宁区
西安市新城区、澄迈县福山镇、广西防城港市上思县、盐城市盐都区、甘孜炉霍县、昆明市东川区
茂名市茂南区、白山市抚松县、内蒙古呼和浩特市玉泉区、黔东南三穗县、芜湖市南陵县、乐东黎族自治县莺歌海镇、上海市嘉定区、黔西南贞丰县、昭通市昭阳区
咸阳市渭城区、泉州市晋江市、通化市东昌区、四平市双辽市、屯昌县南吕镇、临汾市古县、盐城市盐都区、乐山市沙湾区、朔州市朔城区
汕尾市陆丰市、长沙市芙蓉区、宝鸡市凤县、榆林市府谷县、揭阳市榕城区、湛江市麻章区
南阳市淅川县、黔南都匀市、鹤岗市兴安区、邵阳市双清区、凉山甘洛县、乐山市井研县、吉安市吉水县、长沙市天心区、迪庆维西傈僳族自治县、德宏傣族景颇族自治州瑞丽市
福州市永泰县、黄南泽库县、玉溪市红塔区、温州市文成县、池州市东至县、海西蒙古族德令哈市、上饶市余干县、肇庆市端州区
福州市长乐区、遵义市赤水市、内蒙古兴安盟突泉县、东方市东河镇、黔南三都水族自治县、达州市宣汉县、万宁市和乐镇
广西南宁市横州市、恩施州利川市、驻马店市正阳县、马鞍山市当涂县、怒江傈僳族自治州泸水市、攀枝花市盐边县、烟台市栖霞市、凉山西昌市
重庆市南川区、铜仁市石阡县、景德镇市浮梁县、重庆市武隆区、宜春市铜鼓县、长治市平顺县、池州市石台县
晋中市和顺县、日照市岚山区、东莞市虎门镇、玉溪市江川区、广西桂林市恭城瑶族自治县
海北海晏县、长沙市岳麓区、五指山市毛道、广州市越秀区、广西河池市罗城仫佬族自治县、驻马店市上蔡县、东莞市沙田镇、安顺市西秀区、楚雄元谋县、岳阳市岳阳楼区
周口市鹿邑县、新乡市长垣市、渭南市合阳县、济南市莱芜区、绵阳市盐亭县、肇庆市高要区、郴州市安仁县、洛阳市伊川县
嘉峪关市峪泉镇、安康市紫阳县、广西百色市田阳区、北京市怀柔区、宁夏吴忠市红寺堡区、池州市石台县、临沂市莒南县、昆明市富民县、三沙市南沙区
海西蒙古族乌兰县、双鸭山市四方台区、汉中市汉台区、福州市永泰县、重庆市潼南区、运城市河津市、武威市古浪县、本溪市南芬区、芜湖市湾沚区、吉林市昌邑区
忻州市原平市、延安市子长市、赣州市会昌县、岳阳市华容县、辽源市西安区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】