400服务电话:400-1865-909(点击咨询)
群升防盗门客服专线在线支持
群升防盗门全国客服预约维修
群升防盗门全国统一网点24小时热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
群升防盗门全国24小时客服报修中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
群升防盗门维修资讯
群升防盗门维VIP服务专线
维修服务客户积分系统,兑换好礼:建立客户积分系统,根据消费金额、评价等因素给予积分奖励,客户可用积分兑换维修服务券、礼品等好礼。
售后满意度调查,持续改进服务质量,提升用户体验。
群升防盗门400全国24小时服务热线电话
群升防盗门维修服务电话全国服务区域:
湛江市坡头区、鹰潭市月湖区、宁德市周宁县、东莞市大朗镇、凉山普格县、平顶山市郏县、湛江市遂溪县、邵阳市大祥区、莆田市仙游县、昆明市禄劝彝族苗族自治县
吉林市丰满区、洛阳市汝阳县、郴州市资兴市、抚顺市抚顺县、嘉峪关市文殊镇、广西贺州市平桂区、宝鸡市扶风县、珠海市斗门区、常州市金坛区、琼海市阳江镇
洛阳市汝阳县、上饶市余干县、红河弥勒市、六盘水市钟山区、长春市农安县、娄底市新化县、肇庆市端州区
赣州市上犹县、上海市徐汇区、北京市丰台区、锦州市太和区、哈尔滨市平房区、池州市青阳县、咸阳市永寿县
温州市永嘉县、保山市龙陵县、六盘水市盘州市、滁州市明光市、乐东黎族自治县万冲镇、赣州市大余县、平凉市崆峒区、甘孜炉霍县
驻马店市泌阳县、南阳市内乡县、汕头市潮南区、芜湖市鸠江区、洛阳市栾川县、西安市高陵区、湘西州泸溪县、孝感市汉川市
南昌市青山湖区、江门市开平市、儋州市东成镇、北京市顺义区、白沙黎族自治县邦溪镇、东莞市常平镇、大理漾濞彝族自治县、洛阳市老城区、绵阳市安州区
昆明市宜良县、榆林市子洲县、汕头市澄海区、苏州市常熟市、嘉峪关市新城镇
东莞市高埗镇、开封市顺河回族区、九江市湖口县、张家界市慈利县、绵阳市盐亭县、咸阳市旬邑县
武汉市黄陂区、甘孜新龙县、广西崇左市大新县、潍坊市青州市、甘孜道孚县、六盘水市盘州市、红河蒙自市
杭州市富阳区、牡丹江市阳明区、攀枝花市盐边县、丽江市宁蒗彝族自治县、内蒙古鄂尔多斯市准格尔旗、攀枝花市东区、广西河池市南丹县、定安县龙门镇、盐城市响水县、邵阳市大祥区
西安市长安区、阜阳市临泉县、烟台市牟平区、内蒙古乌兰察布市凉城县、乐山市金口河区、阜阳市颍泉区、东莞市大岭山镇、昭通市永善县、中山市大涌镇
南昌市南昌县、大连市长海县、衡阳市耒阳市、金昌市永昌县、上饶市弋阳县
大庆市萨尔图区、直辖县仙桃市、白沙黎族自治县细水乡、深圳市福田区、绍兴市越城区
重庆市万州区、昭通市水富市、临高县加来镇、重庆市石柱土家族自治县、吉林市龙潭区、重庆市丰都县、开封市通许县、德阳市绵竹市
株洲市茶陵县、内蒙古巴彦淖尔市乌拉特中旗、陵水黎族自治县群英乡、濮阳市清丰县、吉林市永吉县、黄冈市黄州区、西宁市湟源县、惠州市惠阳区、乐东黎族自治县黄流镇
南充市仪陇县、淮安市金湖县、鸡西市恒山区、荆门市掇刀区、东莞市茶山镇、本溪市南芬区、本溪市明山区
黄冈市浠水县、广西桂林市龙胜各族自治县、忻州市定襄县、陇南市武都区、庆阳市环县、延安市安塞区、长治市长子县、万宁市和乐镇、漳州市长泰区、咸宁市咸安区
乐东黎族自治县黄流镇、泉州市金门县、安庆市潜山市、鹤壁市鹤山区、北京市通州区、昭通市大关县、株洲市攸县、龙岩市武平县、宁夏中卫市中宁县
周口市项城市、茂名市电白区、通化市柳河县、内蒙古呼和浩特市和林格尔县、宝鸡市千阳县、咸阳市淳化县
内蒙古兴安盟乌兰浩特市、广西河池市凤山县、株洲市石峰区、东莞市高埗镇、广州市增城区、松原市宁江区
渭南市白水县、肇庆市德庆县、衢州市柯城区、滁州市天长市、白沙黎族自治县阜龙乡、延边安图县
十堰市郧阳区、太原市清徐县、宜春市宜丰县、盐城市滨海县、成都市龙泉驿区、汕尾市海丰县、东莞市凤岗镇、荆门市钟祥市、大兴安岭地区呼中区、东莞市高埗镇
眉山市丹棱县、甘孜雅江县、苏州市姑苏区、铜仁市思南县、东营市利津县、三亚市天涯区、定安县新竹镇
芜湖市繁昌区、葫芦岛市南票区、永州市道县、滨州市邹平市、上海市崇明区、甘孜稻城县、绵阳市平武县、宁德市周宁县、漳州市东山县、中山市三角镇
漳州市龙文区、雅安市名山区、湘西州吉首市、屯昌县南坤镇、广西防城港市东兴市、泰州市泰兴市
无锡市梁溪区、吕梁市文水县、白沙黎族自治县金波乡、泰安市宁阳县、资阳市乐至县
400服务电话:400-1865-909(点击咨询)
群升防盗门24小时人工服务电话
群升防盗门全国售后预约热线
群升防盗门24小时服务热线电话是多少今日客服热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
群升防盗门维修服务专线-全国维修客服热线网点查询(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
群升防盗门全国售后热线一站通
群升防盗门400客服售后400联系方式
维修服务技术资料库,助力快速解决:建立全面的维修服务技术资料库,包含各类家电的维修手册、故障案例等,助力技师快速定位并解决问题。
维修服务知识库在线更新,紧跟技术变革:我们定期更新维修服务知识库,收录最新的维修技术和案例,确保技师能够紧跟技术变革,为客户提供更优质的服务。
群升防盗门400统一客服售后服务热线全国
群升防盗门维修服务电话全国服务区域:
内蒙古包头市石拐区、深圳市宝安区、清远市连山壮族瑶族自治县、青岛市即墨区、本溪市桓仁满族自治县、肇庆市鼎湖区、佳木斯市桦川县
黔南贵定县、合肥市瑶海区、中山市西区街道、邵阳市城步苗族自治县、宁波市象山县、内蒙古通辽市科尔沁区、白银市会宁县、临汾市安泽县、凉山喜德县
昆明市禄劝彝族苗族自治县、杭州市下城区、鹤岗市兴山区、衢州市江山市、焦作市中站区
黄石市黄石港区、阜新市彰武县、阳泉市盂县、东莞市茶山镇、南阳市镇平县、濮阳市清丰县、荆门市钟祥市、绍兴市上虞区
汉中市勉县、中山市东区街道、铜陵市郊区、菏泽市巨野县、文昌市铺前镇、大连市瓦房店市、内蒙古通辽市开鲁县、鸡西市麻山区
阜阳市颍泉区、温州市永嘉县、安康市平利县、滨州市博兴县、普洱市宁洱哈尼族彝族自治县、乐山市市中区、吕梁市石楼县、儋州市排浦镇、吉安市峡江县、嘉峪关市峪泉镇
漳州市南靖县、广西河池市巴马瑶族自治县、琼海市嘉积镇、中山市南区街道、长春市绿园区、岳阳市平江县、濮阳市清丰县、漯河市临颍县
延边敦化市、屯昌县西昌镇、广西百色市凌云县、徐州市云龙区、菏泽市巨野县、福州市闽侯县、台州市黄岩区、中山市民众镇、郑州市中牟县
大连市西岗区、张家界市武陵源区、深圳市罗湖区、乐山市马边彝族自治县、淮北市烈山区、鸡西市密山市、甘孜稻城县
宜昌市远安县、酒泉市玉门市、中山市南头镇、阿坝藏族羌族自治州红原县、芜湖市无为市、鹤岗市绥滨县
上海市静安区、红河个旧市、漳州市云霄县、七台河市茄子河区、广西北海市合浦县、直辖县天门市、深圳市南山区、漳州市龙海区
黔东南雷山县、河源市紫金县、成都市双流区、丽江市永胜县、迪庆德钦县、鞍山市立山区、哈尔滨市道里区、东营市河口区
大理永平县、黔南瓮安县、广西贺州市平桂区、宁夏吴忠市青铜峡市、邵阳市武冈市、萍乡市湘东区、德州市陵城区、咸阳市礼泉县、黄山市屯溪区
淄博市高青县、海西蒙古族乌兰县、广安市华蓥市、阿坝藏族羌族自治州松潘县、淮南市凤台县、重庆市长寿区、河源市东源县、大兴安岭地区新林区、澄迈县桥头镇、雅安市雨城区
镇江市丹阳市、东营市广饶县、昭通市鲁甸县、儋州市和庆镇、东莞市桥头镇、成都市崇州市、洛阳市西工区、保山市隆阳区、黔西南兴仁市、衡阳市衡山县
天水市秦安县、临汾市曲沃县、吉安市井冈山市、鹤壁市山城区、韶关市始兴县、海口市龙华区
马鞍山市含山县、阜阳市临泉县、黔东南丹寨县、巴中市通江县、怒江傈僳族自治州福贡县、襄阳市保康县
鸡西市麻山区、黔东南锦屏县、广西崇左市龙州县、铜仁市石阡县、铜仁市松桃苗族自治县、文昌市公坡镇、陇南市成县、朝阳市朝阳县、朔州市怀仁市、大兴安岭地区塔河县
常州市武进区、东营市垦利区、广州市白云区、丹东市凤城市、安阳市殷都区、广西百色市田阳区
琼海市大路镇、珠海市金湾区、台州市玉环市、梅州市梅江区、成都市郫都区、南阳市桐柏县、宜昌市远安县、太原市万柏林区、商丘市梁园区、内蒙古呼伦贝尔市陈巴尔虎旗
海东市平安区、白沙黎族自治县金波乡、广西柳州市鹿寨县、聊城市临清市、驻马店市正阳县、广州市从化区、衡阳市珠晖区、红河弥勒市、昭通市大关县
沈阳市于洪区、上海市杨浦区、内蒙古兴安盟科尔沁右翼中旗、丹东市宽甸满族自治县、绥化市海伦市、漳州市龙文区
玉溪市易门县、重庆市彭水苗族土家族自治县、乐东黎族自治县九所镇、湛江市赤坎区、铁岭市调兵山市、佳木斯市桦南县、定安县岭口镇、南阳市宛城区
昆明市晋宁区、延安市黄龙县、咸阳市彬州市、白银市景泰县、甘孜乡城县、蚌埠市五河县、长沙市雨花区、韶关市乐昌市
陵水黎族自治县隆广镇、安康市宁陕县、景德镇市乐平市、葫芦岛市绥中县、枣庄市市中区、衡阳市衡南县、宁夏银川市贺兰县、乐山市金口河区、兰州市红古区
晋中市寿阳县、六盘水市钟山区、吉安市安福县、楚雄姚安县、黔西南兴义市、淮安市涟水县、内蒙古乌海市海南区、合肥市肥西县
临汾市襄汾县、温州市瓯海区、厦门市翔安区、德宏傣族景颇族自治州芒市、宣城市旌德县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】