荣事达空气能全国24小时维修电话号码
荣事达空气能24小时全国统一400售后电话客服热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
荣事达空气能24H客服报修专线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
荣事达空气能上门服务
荣事达空气能售后查询
维修服务合作伙伴优惠,共享资源:与家电品牌、保险公司等建立合作伙伴关系,为客户提供更多优惠和增值服务,共享资源,互利共赢。
荣事达空气能售后热线速查
荣事达空气能400全国售后联系方式
上海市普陀区、抚顺市新抚区、中山市阜沙镇、长沙市岳麓区、萍乡市上栗县、烟台市龙口市、直辖县天门市、自贡市富顺县、沈阳市皇姑区、昆明市宜良县
常德市临澧县、淮南市凤台县、内蒙古包头市九原区、广安市前锋区、上海市金山区、萍乡市芦溪县、深圳市龙岗区、通化市集安市、东方市江边乡
常德市津市市、宁波市海曙区、自贡市沿滩区、宁波市鄞州区、赣州市安远县、广州市荔湾区、青岛市城阳区、清远市连南瑶族自治县、成都市青羊区
渭南市富平县、三明市将乐县、湘西州凤凰县、鹤岗市工农区、广西玉林市福绵区
永州市江华瑶族自治县、宜昌市猇亭区、徐州市贾汪区、甘南舟曲县、长春市南关区、安阳市滑县、惠州市博罗县
滨州市无棣县、永州市宁远县、天津市宁河区、金华市义乌市、锦州市黑山县、广西钦州市钦南区、湘潭市韶山市
内蒙古赤峰市阿鲁科尔沁旗、广西河池市都安瑶族自治县、临夏和政县、成都市青白江区、宁波市镇海区、南平市顺昌县
鹤岗市兴安区、嘉兴市海盐县、咸阳市武功县、鸡西市梨树区、广西河池市东兰县、连云港市东海县、延边敦化市、天津市西青区、菏泽市单县
韶关市浈江区、内蒙古兴安盟科尔沁右翼中旗、连云港市灌云县、肇庆市德庆县、东莞市石龙镇、大理大理市、吕梁市兴县
广西贺州市昭平县、黔西南普安县、长沙市开福区、长沙市长沙县、常州市天宁区、河源市源城区、昌江黎族自治县乌烈镇
永州市宁远县、甘南迭部县、邵阳市洞口县、温州市永嘉县、凉山会理市、临沂市兰山区、广西贺州市钟山县、文昌市冯坡镇、滁州市明光市
烟台市栖霞市、北京市丰台区、攀枝花市米易县、威海市荣成市、晋中市左权县、宁夏中卫市沙坡头区、肇庆市四会市、深圳市光明区
忻州市五台县、漯河市舞阳县、宿州市埇桥区、周口市项城市、开封市杞县、吕梁市方山县、淮北市烈山区、宁夏固原市原州区
内蒙古赤峰市林西县、金昌市金川区、盐城市滨海县、内蒙古锡林郭勒盟苏尼特左旗、焦作市温县、乐东黎族自治县莺歌海镇
茂名市茂南区、广西百色市靖西市、沈阳市铁西区、玉溪市华宁县、普洱市墨江哈尼族自治县、白城市洮南市、信阳市浉河区、红河泸西县、曲靖市富源县
海南贵南县、榆林市神木市、安顺市平坝区、安康市平利县、广西河池市金城江区、茂名市茂南区
广西玉林市兴业县、文山麻栗坡县、白沙黎族自治县邦溪镇、黔东南雷山县、海东市循化撒拉族自治县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】