意大利冰箱24小时厂家维修客服热线24小时电话
意大利冰箱全国保修热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
意大利冰箱24小时人工服务中心热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
意大利冰箱400客服售后务24小时服务热线电话
意大利冰箱400热线人工服务
技术共享,共同进步:我们鼓励技师之间的技术共享和交流,共同学习新技能、新方法,推动整个团队的共同进步。
意大利冰箱售后电话24小时人工/总部400热线及维修网点查询
意大利冰箱全国各市服务热线电话
德州市禹城市、黄冈市蕲春县、重庆市江北区、平凉市崇信县、清远市连州市、万宁市北大镇、楚雄大姚县、福州市平潭县
莆田市秀屿区、内蒙古赤峰市宁城县、天津市静海区、长治市壶关县、长春市农安县、内蒙古乌海市海勃湾区、宁波市奉化区、衢州市常山县
内蒙古赤峰市克什克腾旗、吕梁市交城县、赣州市龙南市、三明市三元区、昆明市寻甸回族彝族自治县、广西玉林市博白县、丽水市松阳县、重庆市武隆区、广西桂林市平乐县
内蒙古鄂尔多斯市鄂托克前旗、巴中市南江县、泰州市兴化市、锦州市义县、内蒙古锡林郭勒盟阿巴嘎旗、黄石市阳新县、濮阳市南乐县
临沧市云县、定安县黄竹镇、武汉市江夏区、东莞市黄江镇、凉山喜德县、漳州市长泰区
吉安市井冈山市、锦州市凌河区、琼海市潭门镇、赣州市龙南市、宁波市慈溪市、内蒙古包头市石拐区、庆阳市镇原县
双鸭山市四方台区、白山市临江市、广西柳州市柳江区、中山市五桂山街道、保山市龙陵县、东莞市长安镇、广西桂林市灌阳县、厦门市集美区、儋州市东成镇、深圳市宝安区
丽江市永胜县、郴州市桂东县、平顶山市石龙区、沈阳市苏家屯区、甘孜九龙县、广西河池市巴马瑶族自治县、临汾市洪洞县、咸宁市咸安区
黔东南榕江县、安阳市殷都区、铜仁市江口县、广安市前锋区、宁夏吴忠市盐池县、黄冈市罗田县、黄石市铁山区、陵水黎族自治县群英乡、莆田市仙游县
内蒙古巴彦淖尔市乌拉特后旗、定西市漳县、泉州市丰泽区、葫芦岛市建昌县、白沙黎族自治县牙叉镇、广西柳州市鱼峰区、永州市道县、安康市岚皋县、庆阳市庆城县
汉中市宁强县、西双版纳勐腊县、九江市浔阳区、阜新市清河门区、东方市天安乡、滁州市南谯区、深圳市罗湖区、佳木斯市同江市
恩施州巴东县、朔州市山阴县、本溪市溪湖区、赣州市安远县、乐山市夹江县、丹东市东港市、三亚市海棠区、昭通市巧家县
北京市顺义区、营口市站前区、福州市平潭县、娄底市新化县、宁夏银川市永宁县、大理弥渡县、济宁市金乡县、恩施州来凤县
福州市长乐区、嘉兴市秀洲区、昆明市石林彝族自治县、太原市晋源区、甘南碌曲县、内蒙古鄂尔多斯市达拉特旗、安庆市桐城市、内蒙古乌海市海南区
宁夏吴忠市青铜峡市、无锡市新吴区、邵阳市邵阳县、济宁市梁山县、红河建水县
新乡市获嘉县、大庆市林甸县、广西柳州市鱼峰区、黄冈市浠水县、渭南市大荔县
遵义市桐梓县、延边敦化市、许昌市建安区、珠海市香洲区、广州市黄埔区、丽江市玉龙纳西族自治县、安阳市滑县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】