盾实中央空调人工售后电话24小时人工服务热线
盾实中央空调24热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
盾实中央空调售后维修电话客服(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
盾实中央空调服务热线电话全国统一
盾实中央空调400维修点电话
多语服务,跨越障碍:我们提供多语言服务,打破语言障碍,为不同国籍和地区的客户提供贴心、专业的维修服务。
盾实中央空调24小时报修总部热线全国客服服务
盾实中央空调售后维修电话-24小时售后服务电话号码
盐城市盐都区、南平市政和县、宜昌市长阳土家族自治县、商丘市睢阳区、厦门市湖里区
鸡西市梨树区、信阳市息县、烟台市牟平区、荆门市京山市、东莞市南城街道、德阳市旌阳区、成都市双流区、黄冈市红安县、台州市黄岩区、濮阳市华龙区
凉山金阳县、东方市天安乡、万宁市万城镇、杭州市上城区、广西北海市银海区、东莞市塘厦镇
内蒙古通辽市扎鲁特旗、盐城市响水县、海南兴海县、眉山市东坡区、大同市浑源县、新乡市牧野区、玉溪市易门县、贵阳市修文县、北京市平谷区、安庆市宿松县
东莞市凤岗镇、内蒙古呼伦贝尔市陈巴尔虎旗、眉山市彭山区、郴州市资兴市、凉山雷波县、东营市河口区
宁夏吴忠市青铜峡市、衡阳市衡南县、丽江市玉龙纳西族自治县、儋州市和庆镇、衢州市柯城区、运城市夏县、赣州市会昌县
汕头市潮阳区、潮州市湘桥区、渭南市富平县、南京市浦口区、武汉市东西湖区、恩施州巴东县
忻州市岢岚县、湘西州永顺县、陵水黎族自治县文罗镇、南平市浦城县、广西梧州市蒙山县、无锡市滨湖区、郑州市新密市、昭通市盐津县、济宁市曲阜市、南昌市南昌县
黑河市逊克县、临夏康乐县、广西玉林市陆川县、吉林市丰满区、洛阳市新安县、信阳市淮滨县、曲靖市沾益区、广西河池市东兰县
莆田市荔城区、太原市迎泽区、蚌埠市蚌山区、吉安市泰和县、广西崇左市天等县、内蒙古呼和浩特市托克托县、黄冈市浠水县、榆林市神木市、重庆市彭水苗族土家族自治县
杭州市临安区、鄂州市华容区、海东市乐都区、洛阳市涧西区、盐城市响水县
济宁市金乡县、中山市南头镇、烟台市海阳市、临高县波莲镇、西双版纳景洪市、临高县多文镇、大连市旅顺口区、乐山市峨眉山市、怒江傈僳族自治州福贡县、广西柳州市融水苗族自治县
成都市崇州市、淄博市沂源县、清远市连山壮族瑶族自治县、平凉市静宁县、内蒙古锡林郭勒盟二连浩特市
临沂市河东区、临汾市侯马市、抚州市乐安县、江门市恩平市、白沙黎族自治县阜龙乡、烟台市海阳市
湘西州凤凰县、汉中市镇巴县、洛阳市汝阳县、南平市延平区、淮安市洪泽区、德州市乐陵市、屯昌县屯城镇、赣州市定南县、青岛市城阳区、海东市互助土族自治县
临高县新盈镇、延安市延川县、阜阳市颍东区、济宁市汶上县、六盘水市盘州市、鹤壁市淇县、攀枝花市西区、徐州市鼓楼区
宁波市江北区、朝阳市北票市、十堰市房县、广西崇左市宁明县、牡丹江市阳明区、汉中市汉台区、内江市市中区、文山麻栗坡县、安顺市平坝区、咸阳市彬州市
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】