好太太燃气灶24小时快速维修
好太太燃气灶维修热线咨询:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
好太太燃气灶服务24小时热线电话400热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
好太太燃气灶电话24小时人工电话客服
好太太燃气灶全国守护者
我们提供一站式售后服务,从咨询、预约到维修,全程让您无忧无虑。
好太太燃气灶快修预约
好太太燃气灶全国统一维修售后热线
天津市北辰区、深圳市龙岗区、怀化市洪江市、大理洱源县、眉山市丹棱县、滨州市滨城区、上海市闵行区、成都市简阳市
龙岩市连城县、广西来宾市忻城县、榆林市吴堡县、运城市新绛县、天津市红桥区、上海市长宁区、海南共和县、陵水黎族自治县本号镇、内蒙古乌海市海勃湾区、临夏和政县
果洛班玛县、上饶市余干县、遵义市余庆县、济源市市辖区、烟台市龙口市、梅州市梅县区、珠海市香洲区、赣州市南康区
荆州市江陵县、驻马店市泌阳县、琼海市万泉镇、临沧市镇康县、舟山市普陀区、广安市岳池县、四平市伊通满族自治县、儋州市白马井镇、平凉市静宁县、上饶市万年县
南昌市东湖区、绍兴市柯桥区、自贡市沿滩区、六安市舒城县、武汉市江汉区、孝感市应城市、重庆市万州区、洛阳市涧西区、宁夏中卫市中宁县、普洱市西盟佤族自治县
吉安市永丰县、中山市南朗镇、白银市会宁县、毕节市大方县、宝鸡市麟游县、榆林市定边县、德州市宁津县
万宁市和乐镇、广西贵港市覃塘区、云浮市云城区、温州市永嘉县、锦州市黑山县、滨州市博兴县、濮阳市清丰县、常德市武陵区、武汉市洪山区
阿坝藏族羌族自治州汶川县、四平市伊通满族自治县、重庆市涪陵区、庆阳市庆城县、贵阳市南明区、葫芦岛市连山区、潍坊市青州市
文山富宁县、阜新市海州区、武汉市汉南区、上海市长宁区、长治市长子县
白沙黎族自治县荣邦乡、郑州市惠济区、上饶市铅山县、西安市碑林区、海西蒙古族茫崖市、内蒙古呼伦贝尔市陈巴尔虎旗
贵阳市息烽县、厦门市湖里区、定安县龙湖镇、齐齐哈尔市泰来县、湘西州永顺县、深圳市宝安区、阿坝藏族羌族自治州茂县、开封市鼓楼区、广西贺州市平桂区
张掖市肃南裕固族自治县、深圳市罗湖区、遂宁市蓬溪县、绍兴市诸暨市、赣州市宁都县、广州市南沙区、宿州市萧县
宝鸡市太白县、广西梧州市万秀区、广西柳州市柳城县、陵水黎族自治县提蒙乡、抚州市东乡区、广西崇左市天等县、铁岭市清河区、朝阳市朝阳县、抚州市金溪县
绍兴市新昌县、抚顺市新宾满族自治县、重庆市九龙坡区、西宁市湟源县、丹东市振安区、鄂州市华容区、上海市闵行区、咸宁市崇阳县、内蒙古巴彦淖尔市磴口县、宁夏中卫市沙坡头区
厦门市海沧区、牡丹江市西安区、长春市二道区、鸡西市恒山区、重庆市荣昌区、湛江市吴川市、吉林市磐石市、铜川市王益区、江门市台山市
西宁市城中区、定西市临洮县、普洱市墨江哈尼族自治县、甘南迭部县、哈尔滨市延寿县、太原市清徐县、鸡西市鸡东县、黄石市黄石港区、周口市扶沟县
海南同德县、岳阳市湘阴县、定安县翰林镇、绍兴市嵊州市、常德市津市市、琼海市石壁镇、永州市双牌县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】