400服务电话:400-1865-909(点击咨询)
白雪红酒柜总部400服务热线
白雪红酒柜24小时网点维修服务电话
白雪红酒柜客服电话24小时人工服务热线电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
白雪红酒柜开24小时售后服务电话/故障咨询快速响应报修中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
白雪红酒柜售后24小时服务网点查询
白雪红酒柜客服热线专线
维修服务维修过程视频记录,保障权益:在客户同意的情况下,对维修过程进行视频记录,确保维修过程的真实性和可追溯性,保障客户权益。
透明服务流程:从报修到维修,全程透明,让您清晰可见。
白雪红酒柜热线网点遍城乡
白雪红酒柜维修服务电话全国服务区域:
上海市黄浦区、成都市都江堰市、延安市吴起县、牡丹江市爱民区、上海市崇明区、铜仁市江口县、宜昌市西陵区、定西市渭源县、西安市莲湖区、黔南瓮安县
宣城市宣州区、泉州市安溪县、十堰市茅箭区、金华市东阳市、南平市顺昌县、重庆市开州区、松原市扶余市、常德市津市市、万宁市礼纪镇、内蒙古乌兰察布市凉城县
曲靖市马龙区、北京市密云区、红河红河县、滨州市无棣县、广西梧州市长洲区、成都市蒲江县
伊春市丰林县、黔东南岑巩县、宁夏银川市永宁县、内蒙古巴彦淖尔市乌拉特前旗、吕梁市方山县
南阳市唐河县、海口市秀英区、内蒙古包头市东河区、儋州市峨蔓镇、普洱市江城哈尼族彝族自治县
东莞市东坑镇、滁州市定远县、葫芦岛市南票区、延安市子长市、儋州市海头镇、屯昌县屯城镇、荆门市京山市、海西蒙古族乌兰县、洛阳市孟津区、营口市老边区
镇江市扬中市、铜仁市沿河土家族自治县、中山市横栏镇、驻马店市西平县、吉林市龙潭区、宝鸡市眉县、丽水市缙云县
南阳市南召县、晋中市昔阳县、眉山市东坡区、恩施州宣恩县、聊城市阳谷县、金昌市永昌县、南京市江宁区、滨州市滨城区、淮安市淮安区、迪庆德钦县
天水市麦积区、六安市舒城县、广西百色市德保县、上饶市余干县、昆明市富民县、楚雄永仁县、邵阳市新邵县、周口市鹿邑县
九江市武宁县、清远市清新区、昆明市富民县、遂宁市船山区、安顺市平坝区
铁岭市昌图县、天津市宝坻区、甘孜巴塘县、昆明市西山区、江门市江海区、武汉市洪山区、运城市夏县、黔南平塘县、大同市云州区、中山市三角镇
内蒙古赤峰市阿鲁科尔沁旗、连云港市灌南县、内蒙古乌兰察布市集宁区、广西来宾市象州县、潍坊市昌乐县、临汾市蒲县
吕梁市离石区、玉溪市新平彝族傣族自治县、平顶山市宝丰县、陇南市武都区、屯昌县屯城镇、沈阳市辽中区
六安市舒城县、泸州市泸县、陇南市成县、临汾市古县、广西崇左市凭祥市、东莞市茶山镇、十堰市房县
北京市门头沟区、嘉兴市海盐县、安庆市桐城市、商丘市民权县、巴中市平昌县、双鸭山市集贤县、马鞍山市博望区、临高县和舍镇、大理弥渡县、滁州市琅琊区
保山市隆阳区、庆阳市宁县、黔西南贞丰县、抚顺市望花区、永州市江永县、大理巍山彝族回族自治县、赣州市上犹县
天津市宁河区、重庆市渝中区、阿坝藏族羌族自治州茂县、重庆市潼南区、甘孜炉霍县、湛江市霞山区、万宁市和乐镇、汕尾市陆丰市、眉山市青神县、日照市五莲县
贵阳市云岩区、哈尔滨市南岗区、延边珲春市、南阳市西峡县、通化市梅河口市、凉山雷波县、东莞市厚街镇
双鸭山市宝山区、抚州市黎川县、连云港市灌南县、哈尔滨市香坊区、榆林市靖边县
抚州市崇仁县、文山文山市、天津市西青区、鸡西市密山市、濮阳市濮阳县、嘉兴市桐乡市、内蒙古阿拉善盟阿拉善右旗
滁州市琅琊区、白沙黎族自治县金波乡、甘南合作市、资阳市安岳县、中山市三乡镇、黄冈市团风县、宣城市泾县、十堰市郧阳区、衢州市开化县
郴州市苏仙区、漳州市华安县、临高县调楼镇、岳阳市岳阳县、盘锦市盘山县、商洛市洛南县、宜宾市翠屏区
广西河池市大化瑶族自治县、三明市宁化县、吕梁市临县、青岛市市北区、湖州市吴兴区、保山市施甸县、哈尔滨市道外区、乐山市沙湾区
临夏和政县、嘉兴市嘉善县、黄南尖扎县、上饶市婺源县、宁夏固原市原州区
西双版纳景洪市、延安市子长市、天津市东丽区、广西百色市平果市、永州市蓝山县、毕节市赫章县、延安市吴起县、潍坊市寒亭区、玉溪市通海县、亳州市利辛县
内蒙古赤峰市宁城县、咸阳市泾阳县、永州市蓝山县、绵阳市盐亭县、开封市杞县、曲靖市麒麟区
烟台市福山区、保山市昌宁县、铜仁市碧江区、牡丹江市林口县、聊城市茌平区、临沂市平邑县、菏泽市巨野县
400服务电话:400-1865-909(点击咨询)
白雪红酒柜维修专席客服热线
白雪红酒柜全国人工售后维修服务电话热线
白雪红酒柜全国免费报修热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
白雪红酒柜24小时厂家维修上门电话24小时(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
白雪红酒柜全国产品24小时报修服务中心
白雪红酒柜售后维修电话(全国400)服务受理中心
维修服务技术创新:不断探索维修服务技术创新,提高维修效率和准确性。
售后服务团队严格筛选,确保每位技师都具备丰富的经验和专业素养。
白雪红酒柜快速客服热线
白雪红酒柜维修服务电话全国服务区域:
葫芦岛市兴城市、临汾市隰县、吉安市新干县、凉山金阳县、绍兴市上虞区
赣州市崇义县、晋中市祁县、哈尔滨市通河县、佳木斯市汤原县、邵阳市邵阳县、天津市北辰区、西双版纳勐腊县、广西河池市宜州区
揭阳市普宁市、东营市广饶县、信阳市平桥区、广西南宁市上林县、内蒙古呼和浩特市清水河县、鞍山市千山区、安庆市宜秀区、文昌市潭牛镇、日照市五莲县、延边安图县
黔东南黄平县、九江市都昌县、屯昌县南坤镇、重庆市城口县、三沙市西沙区、东方市三家镇、阳泉市平定县、定安县新竹镇
天水市秦州区、临沧市镇康县、南通市通州区、三门峡市卢氏县、澄迈县桥头镇、牡丹江市绥芬河市、永州市双牌县、泉州市石狮市、青岛市莱西市
临高县皇桐镇、果洛达日县、澄迈县仁兴镇、宁夏石嘴山市大武口区、广西梧州市蒙山县、荆门市钟祥市、长治市武乡县、烟台市福山区、榆林市横山区
淮北市濉溪县、通化市柳河县、南京市栖霞区、连云港市灌南县、渭南市富平县、东营市垦利区、三沙市南沙区、吕梁市汾阳市
内蒙古赤峰市巴林左旗、广西柳州市城中区、四平市双辽市、聊城市高唐县、东莞市樟木头镇、东营市垦利区、长治市上党区、咸宁市嘉鱼县
长治市长子县、漳州市云霄县、邵阳市武冈市、临高县波莲镇、中山市民众镇、滁州市来安县、南充市南部县、新乡市凤泉区
西宁市城东区、大理宾川县、丽水市青田县、儋州市雅星镇、铜川市印台区、莆田市荔城区、乐山市马边彝族自治县、嘉兴市秀洲区、濮阳市清丰县、烟台市栖霞市
武汉市黄陂区、内蒙古乌海市乌达区、邵阳市双清区、临夏临夏县、内蒙古呼伦贝尔市满洲里市、临沂市莒南县、濮阳市南乐县
许昌市魏都区、荆州市监利市、广西防城港市港口区、怀化市辰溪县、恩施州巴东县
南平市建瓯市、上海市奉贤区、内蒙古锡林郭勒盟苏尼特右旗、宜昌市猇亭区、儋州市王五镇
广西河池市环江毛南族自治县、平顶山市宝丰县、信阳市新县、中山市黄圃镇、云浮市云城区、烟台市龙口市
锦州市古塔区、巴中市巴州区、成都市大邑县、铁岭市西丰县、肇庆市高要区
宝鸡市陇县、遵义市凤冈县、哈尔滨市木兰县、永州市东安县、宁德市福安市、朔州市朔城区、丽水市松阳县、梅州市平远县
牡丹江市林口县、芜湖市弋江区、郴州市桂东县、南昌市南昌县、定安县龙门镇、南阳市方城县、德州市乐陵市、汉中市城固县、儋州市中和镇、铁岭市银州区
阿坝藏族羌族自治州汶川县、四平市伊通满族自治县、重庆市涪陵区、庆阳市庆城县、贵阳市南明区、葫芦岛市连山区、潍坊市青州市
晋城市泽州县、郴州市嘉禾县、长春市德惠市、朔州市怀仁市、辽阳市弓长岭区、广元市朝天区、黔南贵定县、临沧市凤庆县
昆明市寻甸回族彝族自治县、酒泉市敦煌市、安阳市文峰区、天津市河东区、襄阳市襄州区、赣州市定南县、葫芦岛市建昌县、三亚市海棠区、吉林市龙潭区、广西南宁市西乡塘区
东莞市大朗镇、临沂市蒙阴县、鸡西市密山市、烟台市蓬莱区、宝鸡市渭滨区、天津市武清区、泰安市东平县、聊城市莘县
新余市渝水区、郑州市上街区、铜仁市德江县、锦州市凌海市、临夏广河县、四平市公主岭市、黔东南麻江县、东方市八所镇、遵义市仁怀市、鹤岗市向阳区
芜湖市无为市、沈阳市康平县、延安市黄龙县、太原市清徐县、雅安市宝兴县、内蒙古通辽市科尔沁区、重庆市涪陵区
保山市腾冲市、嘉兴市海盐县、杭州市萧山区、三亚市海棠区、北京市西城区、合肥市庐阳区、广西北海市海城区、成都市蒲江县、大庆市大同区
荆州市监利市、内蒙古巴彦淖尔市五原县、内江市东兴区、盘锦市盘山县、北京市东城区、铜陵市郊区、赣州市兴国县、资阳市乐至县
重庆市奉节县、湛江市徐闻县、白沙黎族自治县邦溪镇、金华市磐安县、赣州市石城县
白沙黎族自治县细水乡、迪庆德钦县、内江市隆昌市、内蒙古通辽市科尔沁左翼中旗、广西玉林市北流市、重庆市石柱土家族自治县、济宁市嘉祥县、漳州市龙海区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】