400服务电话:400-1865-909(点击咨询)
桃李世家保险柜人工预约专线
桃李世家保险柜全国人工售后维修服务热线电话
桃李世家保险柜总部400电话售后查询:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
桃李世家保险柜400客服网点资讯(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
桃李世家保险柜快速维修热线
桃李世家保险柜全国售后统一网
维修服务环保材料使用,绿色维修:在维修过程中,优先使用环保材料,减少对环境的影响,推广绿色维修理念。
环保维修材料推广,助力可持续发展:我们积极推广使用环保维修材料,减少对环境的影响,助力可持续发展目标的实现。
桃李世家保险柜全国售后支持中心
桃李世家保险柜维修服务电话全国服务区域:
厦门市翔安区、合肥市长丰县、新乡市卫滨区、东营市东营区、宁德市霞浦县
淮南市潘集区、荆门市东宝区、赣州市宁都县、黄山市黟县、宁波市镇海区、上海市青浦区、重庆市永川区
新乡市长垣市、武汉市蔡甸区、内蒙古乌海市乌达区、鹤壁市淇滨区、南阳市社旗县、咸阳市杨陵区、株洲市攸县、渭南市富平县、广西桂林市全州县、临高县新盈镇
重庆市丰都县、上海市虹口区、衡阳市衡东县、娄底市涟源市、眉山市洪雅县、淮南市大通区、龙岩市永定区、吉安市泰和县、衢州市龙游县
南京市江宁区、抚顺市新抚区、广西崇左市龙州县、上海市宝山区、泉州市洛江区、黄冈市英山县、朔州市山阴县、重庆市武隆区、中山市中山港街道、攀枝花市东区
汕头市潮阳区、哈尔滨市道外区、中山市民众镇、烟台市牟平区、梅州市丰顺县、舟山市定海区、济宁市任城区
长治市长子县、漳州市云霄县、邵阳市武冈市、临高县波莲镇、中山市民众镇、滁州市来安县、南充市南部县、新乡市凤泉区
济宁市汶上县、舟山市岱山县、黄冈市红安县、宿迁市沭阳县、宜昌市西陵区
商洛市商州区、临汾市浮山县、东方市板桥镇、北京市门头沟区、厦门市思明区、晋城市泽州县、吉林市舒兰市、宜春市樟树市、绍兴市新昌县
东莞市中堂镇、云浮市新兴县、鹰潭市贵溪市、南平市延平区、延安市洛川县、内江市市中区、晋城市泽州县、甘孜新龙县、武汉市新洲区、牡丹江市宁安市
福州市闽清县、孝感市汉川市、宜昌市宜都市、甘孜九龙县、长春市南关区、随州市曾都区、焦作市沁阳市
嘉兴市南湖区、红河河口瑶族自治县、咸宁市嘉鱼县、咸阳市彬州市、十堰市竹山县、忻州市五寨县
宜宾市南溪区、晋中市昔阳县、常德市临澧县、沈阳市沈北新区、蚌埠市固镇县、晋中市灵石县、台州市仙居县、黔南瓮安县
文昌市冯坡镇、陇南市文县、临沧市凤庆县、黔西南安龙县、遵义市汇川区、临汾市隰县、渭南市华州区
六盘水市盘州市、中山市南头镇、泉州市鲤城区、牡丹江市海林市、泸州市古蔺县、遵义市仁怀市、宁波市象山县
宁波市镇海区、泰安市新泰市、亳州市谯城区、兰州市西固区、西安市阎良区、伊春市友好区、陵水黎族自治县英州镇、宁夏石嘴山市大武口区、洛阳市新安县、宜春市铜鼓县
荆州市洪湖市、广西河池市天峨县、沈阳市法库县、贵阳市白云区、屯昌县屯城镇
怀化市辰溪县、舟山市岱山县、丽江市华坪县、乐山市五通桥区、成都市蒲江县、鞍山市千山区、辽阳市灯塔市、海北门源回族自治县、楚雄元谋县、万宁市长丰镇
佛山市禅城区、铜陵市铜官区、本溪市明山区、东莞市大岭山镇、平顶山市汝州市、延安市安塞区
太原市迎泽区、新乡市封丘县、舟山市嵊泗县、广安市华蓥市、洛阳市伊川县、宁德市福鼎市、温州市苍南县、厦门市翔安区
南充市嘉陵区、陵水黎族自治县英州镇、青岛市黄岛区、江门市台山市、驻马店市泌阳县、齐齐哈尔市泰来县、北京市延庆区、丽水市松阳县、重庆市巫山县、成都市金堂县
内蒙古呼和浩特市新城区、德州市平原县、郑州市新郑市、重庆市巴南区、万宁市长丰镇、鞍山市立山区、郑州市中牟县
驻马店市西平县、大庆市让胡路区、忻州市偏关县、鸡西市麻山区、忻州市代县、太原市万柏林区、成都市青白江区、东莞市桥头镇
内蒙古呼伦贝尔市牙克石市、广西防城港市上思县、晋中市太谷区、儋州市中和镇、澄迈县老城镇、肇庆市德庆县、驻马店市新蔡县、绵阳市盐亭县、儋州市东成镇、萍乡市上栗县
定安县新竹镇、蚌埠市龙子湖区、中山市横栏镇、安阳市内黄县、咸宁市崇阳县
福州市连江县、永州市道县、济南市钢城区、云浮市新兴县、济宁市鱼台县、凉山西昌市、定西市渭源县
天津市东丽区、阿坝藏族羌族自治州小金县、宜春市袁州区、泉州市洛江区、内蒙古通辽市奈曼旗、重庆市渝北区、中山市小榄镇、营口市老边区
400服务电话:400-1865-909(点击咨询)
桃李世家保险柜24小时网点
桃李世家保险柜全天客服咨询专线
桃李世家保险柜400全国售后24小时维修受理:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
桃李世家保险柜客服电话/全国统一服务热线(客服/电话)(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
桃李世家保险柜售后电话大全及维修网点
桃李世家保险柜全天候响应维修
维修服务免费检测服务,提前发现隐患:对于新客户或特定促销活动期间,提供免费家电检测服务,帮助客户提前发现潜在故障隐患。
维修服务紧急维修绿色通道,优先处理:对于特殊紧急情况,开通维修绿色通道,优先处理客户问题,确保客户利益最大化。
桃李世家保险柜统一客服通道
桃李世家保险柜维修服务电话全国服务区域:
无锡市滨湖区、阜新市太平区、临汾市永和县、安阳市安阳县、遂宁市安居区、邵阳市北塔区、盐城市大丰区
珠海市金湾区、黔南惠水县、儋州市王五镇、西宁市湟中区、东莞市万江街道、广西梧州市藤县、德宏傣族景颇族自治州盈江县、七台河市新兴区、遵义市绥阳县、武汉市江岸区
定西市通渭县、黑河市孙吴县、楚雄楚雄市、儋州市南丰镇、松原市乾安县、丹东市凤城市
伊春市南岔县、惠州市惠城区、成都市邛崃市、滁州市明光市、大同市天镇县、莆田市涵江区、楚雄双柏县、宜春市上高县、揭阳市榕城区
儋州市兰洋镇、四平市铁东区、盘锦市兴隆台区、玉溪市新平彝族傣族自治县、连云港市东海县、汉中市西乡县、澄迈县仁兴镇
驻马店市遂平县、杭州市余杭区、亳州市谯城区、哈尔滨市延寿县、荆门市掇刀区、榆林市佳县、毕节市七星关区、四平市铁东区
牡丹江市绥芬河市、西安市周至县、乐东黎族自治县利国镇、广西贵港市港南区、汕尾市城区、榆林市定边县、松原市长岭县、陇南市武都区
内蒙古包头市昆都仑区、文昌市文教镇、重庆市云阳县、内蒙古通辽市库伦旗、平凉市灵台县、荆州市松滋市、吉安市吉水县
江门市新会区、衢州市开化县、吕梁市汾阳市、韶关市新丰县、内蒙古乌兰察布市凉城县、烟台市芝罘区、广西柳州市柳北区
普洱市江城哈尼族彝族自治县、广安市华蓥市、怀化市新晃侗族自治县、咸阳市兴平市、池州市青阳县、延安市甘泉县、襄阳市樊城区、成都市邛崃市、兰州市安宁区、吉安市泰和县
吕梁市中阳县、东方市感城镇、常州市新北区、榆林市府谷县、凉山木里藏族自治县、韶关市新丰县、中山市中山港街道、漳州市长泰区、无锡市锡山区、广西桂林市荔浦市
中山市横栏镇、成都市新都区、阜新市细河区、延边敦化市、白城市大安市、武汉市东西湖区、内蒙古乌兰察布市兴和县、陵水黎族自治县英州镇
重庆市大渡口区、天津市南开区、甘孜理塘县、宁夏吴忠市红寺堡区、鸡西市恒山区、松原市长岭县、大理大理市、淮安市涟水县、安顺市平坝区、济南市章丘区
定西市临洮县、信阳市罗山县、宿州市砀山县、十堰市郧阳区、内蒙古锡林郭勒盟多伦县
眉山市丹棱县、甘孜甘孜县、开封市鼓楼区、佳木斯市郊区、三明市三元区
朝阳市北票市、昆明市官渡区、淮安市涟水县、中山市南头镇、马鞍山市雨山区
镇江市丹徒区、三明市沙县区、肇庆市四会市、苏州市昆山市、邵阳市北塔区
重庆市南川区、西双版纳景洪市、无锡市新吴区、徐州市邳州市、内蒙古兴安盟科尔沁右翼中旗、宜昌市伍家岗区、南阳市淅川县、广西桂林市龙胜各族自治县、宝鸡市眉县
吕梁市交城县、汕头市南澳县、玉溪市华宁县、海北海晏县、咸宁市通山县
平顶山市叶县、甘孜九龙县、宜春市高安市、榆林市佳县、哈尔滨市平房区、汉中市略阳县、文昌市东郊镇
宣城市旌德县、鹤岗市向阳区、六盘水市钟山区、淮南市潘集区、阳江市阳东区、新乡市凤泉区、内蒙古鄂尔多斯市鄂托克前旗、驻马店市平舆县、滁州市天长市
焦作市武陟县、沈阳市辽中区、广西桂林市象山区、双鸭山市岭东区、杭州市富阳区、湘潭市韶山市
甘南碌曲县、鹤壁市鹤山区、临汾市安泽县、阜阳市阜南县、许昌市建安区、天水市张家川回族自治县、吉林市船营区、铜川市耀州区、琼海市大路镇、广州市天河区
北京市平谷区、安庆市太湖县、广西百色市田东县、岳阳市临湘市、文山富宁县、澄迈县大丰镇、沈阳市新民市、文昌市抱罗镇、内蒙古通辽市开鲁县
亳州市蒙城县、运城市芮城县、双鸭山市岭东区、伊春市友好区、乐山市沐川县、陇南市西和县、海西蒙古族乌兰县
海东市互助土族自治县、酒泉市瓜州县、衡阳市蒸湘区、河源市连平县、鞍山市台安县、平顶山市舞钢市、庆阳市正宁县、烟台市栖霞市、西安市周至县、台州市临海市
盐城市盐都区、咸阳市兴平市、三门峡市陕州区、淄博市张店区、三亚市海棠区、内蒙古包头市青山区、许昌市鄢陵县、九江市彭泽县、徐州市新沂市
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】