全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

红日太阳能24H客户热线

发布时间:
红日太阳能统一售后服务热线







红日太阳能24H客户热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









红日太阳能总部400售后服务客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





红日太阳能24小时网点查询

红日太阳能服务预约









维修服务在线支付功能,方便快捷:支持在线支付功能,客户可通过APP或官网直接支付维修费用,省去现金支付的繁琐。




红日太阳能全国免费电话-总部400客服热线









红日太阳能400全国售后上门维修电话是多少号码

 韶关市武江区、北京市昌平区、广西玉林市北流市、福州市鼓楼区、忻州市定襄县、临沂市沂水县、怀化市沅陵县、恩施州鹤峰县





琼海市石壁镇、云浮市郁南县、广西桂林市全州县、铜陵市铜官区、驻马店市正阳县、宿迁市沭阳县









济南市天桥区、济宁市梁山县、池州市青阳县、乐山市五通桥区、临高县博厚镇、锦州市义县









新乡市原阳县、琼海市中原镇、焦作市武陟县、大庆市萨尔图区、广西梧州市蒙山县、德州市禹城市、清远市佛冈县、内蒙古锡林郭勒盟苏尼特右旗









赣州市定南县、阜阳市颍上县、广西崇左市凭祥市、广元市利州区、肇庆市端州区、漳州市龙海区、齐齐哈尔市昂昂溪区、绍兴市越城区









西双版纳勐腊县、安康市紫阳县、庆阳市环县、娄底市涟源市、淮北市相山区









绵阳市平武县、吕梁市中阳县、黑河市嫩江市、济南市市中区、合肥市巢湖市、滁州市定远县、嘉兴市南湖区









潍坊市诸城市、双鸭山市集贤县、南昌市新建区、东莞市谢岗镇、通化市二道江区、白银市靖远县









武威市民勤县、佳木斯市抚远市、泰安市宁阳县、海东市循化撒拉族自治县、临沂市平邑县、东莞市横沥镇









金华市义乌市、铜仁市沿河土家族自治县、焦作市马村区、迪庆德钦县、丽江市玉龙纳西族自治县、酒泉市阿克塞哈萨克族自治县、池州市东至县、厦门市集美区









茂名市信宜市、成都市郫都区、广安市广安区、上海市静安区、淮安市洪泽区、嘉兴市平湖市、惠州市龙门县、天津市和平区、郑州市荥阳市









西安市新城区、平凉市灵台县、永州市江永县、昆明市官渡区、海西蒙古族天峻县、天津市红桥区









徐州市鼓楼区、海西蒙古族乌兰县、红河开远市、运城市绛县、重庆市云阳县、辽阳市白塔区、吉林市昌邑区、昆明市盘龙区、六安市叶集区









焦作市中站区、沈阳市和平区、江门市台山市、临沂市沂南县、广西桂林市七星区、宜春市万载县、漯河市舞阳县









成都市崇州市、鞍山市铁西区、淮南市凤台县、普洱市景谷傣族彝族自治县、临汾市乡宁县、黄冈市浠水县、绥化市兰西县、菏泽市牡丹区、广西来宾市忻城县









株洲市茶陵县、南阳市唐河县、雅安市名山区、梅州市兴宁市、郑州市巩义市、大庆市让胡路区、西安市高陵区









肇庆市端州区、抚顺市东洲区、遵义市正安县、广西梧州市苍梧县、淮北市烈山区、晋中市和顺县

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文