400服务电话:400-1865-909(点击咨询)
申海燃气灶客服专线热线
申海燃气灶总部维修服务热线
申海燃气灶全国24小时网点客服热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
申海燃气灶全国报修电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
申海燃气灶24h热线客服
申海燃气灶专业维修中心
维修前后安全检测:确保维修前后产品均通过严格的安全检测,保障使用安全。
维修服务客户教育课程,提升维护能力:定期举办客户教育课程,教授家电日常维护知识,提升客户自我维护能力。
申海燃气灶售后电话查询
申海燃气灶维修服务电话全国服务区域:
梅州市大埔县、广西梧州市蒙山县、甘孜甘孜县、大连市中山区、汕头市澄海区、广西贵港市平南县、自贡市沿滩区
株洲市攸县、铜陵市枞阳县、澄迈县金江镇、东方市大田镇、肇庆市鼎湖区、天津市蓟州区
岳阳市岳阳县、广西崇左市凭祥市、马鞍山市雨山区、台州市路桥区、大连市中山区、天水市秦州区、眉山市洪雅县、南京市鼓楼区、内蒙古包头市土默特右旗
东莞市中堂镇、黄冈市浠水县、东莞市大岭山镇、眉山市仁寿县、南昌市西湖区
滁州市凤阳县、贵阳市花溪区、中山市东升镇、郑州市中牟县、平凉市泾川县、张家界市武陵源区、万宁市东澳镇、怒江傈僳族自治州泸水市、广西梧州市藤县
玉树杂多县、济南市市中区、揭阳市普宁市、通化市二道江区、湖州市德清县、宁德市霞浦县
武汉市青山区、铜仁市玉屏侗族自治县、北京市门头沟区、商洛市山阳县、广西南宁市江南区、齐齐哈尔市克东县
新乡市辉县市、黔西南贞丰县、德州市德城区、黄冈市罗田县、安阳市殷都区、沈阳市康平县、伊春市嘉荫县、黔东南黎平县、临汾市安泽县
西宁市湟源县、盐城市射阳县、海口市龙华区、菏泽市成武县、苏州市吴江区、黄山市黄山区、济南市历下区、南平市建阳区、宿州市砀山县、内蒙古呼和浩特市土默特左旗
湘潭市韶山市、内蒙古兴安盟科尔沁右翼前旗、马鞍山市雨山区、济南市章丘区、宁波市北仑区、中山市横栏镇
榆林市靖边县、绥化市望奎县、西安市长安区、澄迈县永发镇、齐齐哈尔市讷河市
德州市宁津县、舟山市岱山县、丹东市凤城市、长治市长子县、天津市津南区、湛江市赤坎区、黄山市黄山区
中山市东升镇、衢州市常山县、盐城市滨海县、漯河市召陵区、东营市河口区
张掖市民乐县、湛江市坡头区、郑州市中牟县、韶关市南雄市、信阳市光山县、淮南市谢家集区、焦作市解放区、广西北海市银海区、伊春市铁力市、广西桂林市荔浦市
宿迁市泗阳县、本溪市平山区、德州市临邑县、安康市镇坪县、嘉兴市海盐县、东莞市万江街道、哈尔滨市宾县
淄博市高青县、大理祥云县、郴州市汝城县、三门峡市卢氏县、铁岭市昌图县
文昌市冯坡镇、通化市梅河口市、黔东南施秉县、景德镇市乐平市、杭州市余杭区、东方市八所镇、儋州市木棠镇、内蒙古呼和浩特市土默特左旗、南阳市唐河县、蚌埠市禹会区
广西河池市凤山县、新乡市卫滨区、白沙黎族自治县青松乡、驻马店市西平县、肇庆市德庆县、宣城市泾县、黔东南黄平县、昆明市东川区、海西蒙古族天峻县
广州市从化区、湛江市雷州市、黔东南剑河县、保山市施甸县、内蒙古兴安盟突泉县、铜仁市石阡县、临沂市沂南县、临沂市莒南县、宁波市奉化区
赣州市兴国县、丽水市庆元县、韶关市仁化县、兰州市七里河区、黄南河南蒙古族自治县、晋中市平遥县、黔东南黄平县、孝感市安陆市、滁州市明光市、清远市佛冈县
内蒙古通辽市霍林郭勒市、甘南碌曲县、葫芦岛市南票区、湛江市雷州市、屯昌县乌坡镇、南阳市唐河县、天津市南开区、怀化市通道侗族自治县
临沧市凤庆县、宜春市高安市、贵阳市白云区、洛阳市伊川县、青岛市城阳区、常州市天宁区、珠海市香洲区、遂宁市安居区、南京市玄武区、南京市溧水区
济南市平阴县、丽江市永胜县、定西市陇西县、宜春市万载县、新乡市卫滨区、晋中市灵石县、甘孜泸定县、鹤岗市东山区、酒泉市玉门市
天津市武清区、成都市新津区、锦州市黑山县、漳州市华安县、枣庄市台儿庄区
双鸭山市集贤县、甘孜泸定县、绵阳市三台县、宿迁市泗阳县、济南市钢城区、凉山甘洛县
内蒙古乌兰察布市卓资县、新乡市长垣市、漳州市漳浦县、上饶市铅山县、保山市隆阳区、漳州市南靖县、遵义市正安县、洛阳市偃师区、揭阳市普宁市、徐州市新沂市
黄石市下陆区、荆州市公安县、怀化市中方县、九江市都昌县、广西贺州市平桂区、广西柳州市融安县、临沂市河东区
400服务电话:400-1865-909(点击咨询)
申海燃气灶全国售后网点客服专线预约
申海燃气灶全国人工售后联系方式
申海燃气灶维修24小时上门服务:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
申海燃气灶售后服务部电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
申海燃气灶全国上门服务联系方式
申海燃气灶全国客户服务中心
维修服务智能家电调试服务,享受科技:为智能家电用户提供调试服务,确保智能功能正常运行,让客户充分享受科技带来的便利。
维修案例分享,增强信任感:我们通过官方网站、社交媒体等渠道分享维修案例,展示我们的专业能力和成功案例,增强客户对我们的信任感。
申海燃气灶全国售后支持
申海燃气灶维修服务电话全国服务区域:
中山市神湾镇、合肥市瑶海区、鹤壁市浚县、吉安市万安县、陇南市西和县、九江市德安县、潍坊市诸城市、芜湖市南陵县、商丘市睢阳区、酒泉市瓜州县
淮安市淮阴区、黄石市黄石港区、楚雄姚安县、抚州市金溪县、榆林市定边县、晋中市祁县、襄阳市保康县、黔南龙里县、深圳市福田区
河源市东源县、周口市沈丘县、屯昌县南吕镇、宁波市奉化区、新乡市长垣市、晋中市和顺县、临沂市平邑县、资阳市乐至县、临汾市永和县、牡丹江市东宁市
宿州市埇桥区、南昌市西湖区、德宏傣族景颇族自治州盈江县、文昌市铺前镇、长春市南关区
广西玉林市北流市、平顶山市鲁山县、果洛达日县、湘西州保靖县、甘孜泸定县、广元市剑阁县、合肥市庐江县、广西贵港市覃塘区
黄冈市蕲春县、济南市商河县、赣州市信丰县、雅安市天全县、福州市连江县、通化市梅河口市
保亭黎族苗族自治县什玲、文昌市铺前镇、赣州市龙南市、盐城市射阳县、佳木斯市桦川县、淮北市杜集区、大庆市肇源县、云浮市云城区、阜新市新邱区、河源市和平县
郑州市管城回族区、达州市大竹县、中山市三乡镇、盘锦市兴隆台区、苏州市常熟市
遵义市正安县、荆州市监利市、遵义市湄潭县、东莞市横沥镇、昌江黎族自治县叉河镇
晋中市左权县、太原市杏花岭区、周口市鹿邑县、荆州市洪湖市、杭州市上城区、营口市老边区、商洛市洛南县、酒泉市敦煌市、南京市溧水区
大庆市萨尔图区、运城市新绛县、湖州市吴兴区、阜阳市太和县、庆阳市西峰区、泰安市肥城市、牡丹江市阳明区、海西蒙古族都兰县
商洛市商州区、临汾市浮山县、东方市板桥镇、北京市门头沟区、厦门市思明区、晋城市泽州县、吉林市舒兰市、宜春市樟树市、绍兴市新昌县
成都市都江堰市、鹤壁市浚县、广西桂林市龙胜各族自治县、五指山市毛阳、广州市南沙区、广西玉林市玉州区、四平市梨树县、汉中市佛坪县、丹东市元宝区、黔南罗甸县
宿州市埇桥区、万宁市山根镇、鸡西市鸡冠区、淄博市淄川区、东莞市道滘镇、营口市大石桥市、攀枝花市东区、益阳市沅江市、铁岭市西丰县
铁岭市昌图县、大同市云冈区、黔东南榕江县、文山文山市、榆林市榆阳区
绵阳市梓潼县、吕梁市石楼县、九江市濂溪区、长春市双阳区、南平市建阳区
朝阳市双塔区、湘潭市雨湖区、资阳市乐至县、咸阳市淳化县、丹东市元宝区、抚州市崇仁县、武汉市汉阳区、抚顺市新抚区、商丘市梁园区、安康市白河县
曲靖市富源县、洛阳市栾川县、平凉市崇信县、丽水市云和县、郑州市上街区、抚州市崇仁县、扬州市仪征市、西安市莲湖区
重庆市合川区、大同市左云县、芜湖市南陵县、安康市旬阳市、昌江黎族自治县七叉镇、重庆市垫江县、广安市华蓥市
永州市江华瑶族自治县、宜昌市猇亭区、徐州市贾汪区、甘南舟曲县、长春市南关区、安阳市滑县、惠州市博罗县
潍坊市昌乐县、嘉峪关市文殊镇、清远市清新区、内蒙古锡林郭勒盟锡林浩特市、鹤壁市淇县、开封市尉氏县、白城市洮北区、芜湖市湾沚区
三明市永安市、贵阳市乌当区、长沙市岳麓区、广西桂林市永福县、信阳市平桥区、海西蒙古族乌兰县、洛阳市瀍河回族区、庆阳市正宁县、抚州市南城县、保山市施甸县
泰安市泰山区、大同市云州区、吕梁市文水县、雅安市天全县、荆州市江陵县、定安县富文镇、信阳市商城县、丽江市宁蒗彝族自治县、赣州市赣县区、重庆市南川区
江门市新会区、亳州市谯城区、汕尾市海丰县、威海市乳山市、定安县雷鸣镇、枣庄市峄城区、潮州市湘桥区、中山市民众镇
沈阳市辽中区、广西河池市大化瑶族自治县、中山市古镇镇、朝阳市龙城区、巴中市平昌县、广西防城港市东兴市、菏泽市单县、东莞市石排镇
宁夏吴忠市青铜峡市、广西贵港市港南区、酒泉市玉门市、广西来宾市武宣县、内蒙古乌海市海南区、广西桂林市叠彩区、海东市乐都区、济宁市梁山县、汉中市城固县、九江市瑞昌市
临汾市翼城县、衡阳市雁峰区、昆明市盘龙区、梅州市五华县、温州市泰顺县、泉州市南安市、淮安市金湖县、成都市温江区、亳州市蒙城县、乐东黎族自治县佛罗镇
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】