400服务电话:400-1865-909(点击咨询)
红光保险柜总部400电话全国客服服务400
红光保险柜人工客服400在线报修
红光保险柜专享服务热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
红光保险柜24h在线预约报修(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
红光保险柜全国速修热线
红光保险柜24小时上门服务全国统一
维修过程中,我们将确保所有操作符合行业安全标准和规定。
客户反馈激励机制,鼓励真实评价:我们设立客户反馈激励机制,鼓励客户提供真实、有价值的评价和建议,帮助我们不断改进服务。
红光保险柜售后网点查询
红光保险柜维修服务电话全国服务区域:
安阳市内黄县、成都市金牛区、怒江傈僳族自治州福贡县、澄迈县桥头镇、凉山普格县、三明市宁化县、宜昌市当阳市
汕尾市海丰县、周口市沈丘县、文昌市文城镇、东方市东河镇、黄冈市麻城市、开封市祥符区、温州市泰顺县、池州市青阳县、牡丹江市海林市、肇庆市高要区
广西百色市德保县、揭阳市普宁市、台州市路桥区、宝鸡市太白县、赣州市瑞金市、商丘市永城市、三门峡市陕州区、儋州市白马井镇、内蒙古呼和浩特市和林格尔县、宿迁市宿城区
东莞市樟木头镇、儋州市中和镇、抚州市黎川县、南充市西充县、临汾市乡宁县、泰州市高港区
常德市津市市、汕头市金平区、清远市英德市、儋州市和庆镇、南平市浦城县、丽水市遂昌县、儋州市白马井镇、五指山市南圣、六安市金安区、咸阳市兴平市
楚雄禄丰市、东营市利津县、吕梁市方山县、广西南宁市马山县、楚雄大姚县、内蒙古呼和浩特市和林格尔县、荆门市掇刀区、威海市乳山市、济南市历下区
张掖市山丹县、铜仁市玉屏侗族自治县、成都市武侯区、朔州市右玉县、菏泽市巨野县、大同市天镇县
中山市沙溪镇、朔州市怀仁市、常州市新北区、济宁市兖州区、乐东黎族自治县千家镇
齐齐哈尔市富裕县、临沂市郯城县、兰州市城关区、漯河市源汇区、广西南宁市邕宁区
广西桂林市叠彩区、葫芦岛市绥中县、惠州市惠阳区、成都市郫都区、咸宁市通山县、东方市东河镇、黄冈市团风县、中山市坦洲镇
金华市金东区、广西玉林市玉州区、鞍山市千山区、济南市长清区、澄迈县大丰镇、宁波市鄞州区、攀枝花市仁和区、昭通市昭阳区、杭州市桐庐县、成都市龙泉驿区
重庆市云阳县、大兴安岭地区呼玛县、海南贵南县、天津市南开区、绵阳市北川羌族自治县、资阳市安岳县、济南市市中区、贵阳市花溪区
上海市杨浦区、中山市五桂山街道、齐齐哈尔市克山县、宜昌市五峰土家族自治县、海南共和县
南通市如皋市、儋州市中和镇、文昌市东郊镇、广西南宁市邕宁区、哈尔滨市依兰县、渭南市白水县、淮安市盱眙县
九江市德安县、大连市庄河市、湘潭市湘潭县、本溪市南芬区、屯昌县新兴镇
邵阳市双清区、鞍山市海城市、深圳市盐田区、亳州市涡阳县、锦州市太和区、沈阳市大东区、中山市坦洲镇、文山富宁县、重庆市垫江县、临沧市云县
铜仁市江口县、乐东黎族自治县大安镇、咸阳市秦都区、丽水市青田县、鹰潭市月湖区
保山市昌宁县、杭州市富阳区、商丘市宁陵县、辽阳市辽阳县、东莞市常平镇、泰安市肥城市、许昌市建安区
定安县龙湖镇、亳州市利辛县、哈尔滨市通河县、牡丹江市东安区、临沂市沂南县、直辖县天门市、长春市绿园区
周口市鹿邑县、新乡市长垣市、渭南市合阳县、济南市莱芜区、绵阳市盐亭县、肇庆市高要区、郴州市安仁县、洛阳市伊川县
铜川市王益区、内蒙古呼伦贝尔市根河市、湘西州花垣县、洛阳市洛龙区、淮安市涟水县、广州市荔湾区、汕头市南澳县、洛阳市洛宁县、伊春市友好区、毕节市织金县
武汉市黄陂区、铜仁市石阡县、内蒙古鄂尔多斯市达拉特旗、聊城市临清市、鹤岗市绥滨县、陵水黎族自治县黎安镇、洛阳市西工区、临汾市大宁县
太原市万柏林区、滨州市滨城区、内蒙古兴安盟扎赉特旗、陇南市两当县、齐齐哈尔市富拉尔基区
内蒙古鄂尔多斯市康巴什区、南京市雨花台区、临汾市安泽县、本溪市南芬区、新乡市延津县、盐城市滨海县
毕节市赫章县、大庆市林甸县、重庆市奉节县、内蒙古鄂尔多斯市乌审旗、内蒙古通辽市科尔沁左翼中旗、重庆市渝北区
昆明市寻甸回族彝族自治县、陵水黎族自治县文罗镇、海东市民和回族土族自治县、黔东南天柱县、保亭黎族苗族自治县保城镇、天津市东丽区、定安县富文镇
运城市永济市、湘潭市雨湖区、周口市商水县、宝鸡市扶风县、黄山市徽州区、晋城市高平市、乐山市沐川县、黔南瓮安县、长沙市宁乡市
400服务电话:400-1865-909(点击咨询)
红光保险柜厂家总部售后咨询台
红光保险柜400全国售后报修服务电话热线
红光保险柜24小时服务查询:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
红光保险柜服务热线统一接入(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
红光保险柜维修服务售后客服热线电话
红光保险柜各中心24小时客服热线电话
服务团队拥有丰富的维修经验,各类疑难杂症都能迎刃而解。
维修服务定期回访机制,关怀备至:建立定期回访机制,了解客户家电使用情况及对维修服务的满意度,提供后续关怀和建议。
红光保险柜全统一人工24小时服务中心
红光保险柜维修服务电话全国服务区域:
抚州市崇仁县、南平市邵武市、宁夏中卫市海原县、青岛市市北区、邵阳市城步苗族自治县、泰安市东平县、四平市铁西区、湘西州龙山县、延边珲春市、烟台市招远市
吉林市舒兰市、东莞市中堂镇、宜春市袁州区、株洲市渌口区、内蒙古巴彦淖尔市乌拉特前旗、屯昌县南坤镇、宁德市屏南县、郑州市管城回族区
阜新市细河区、双鸭山市宝山区、眉山市青神县、北京市朝阳区、毕节市赫章县、遵义市播州区、文山西畴县
商洛市商南县、淮北市烈山区、牡丹江市宁安市、宁德市屏南县、临高县波莲镇
潍坊市昌乐县、广州市从化区、大同市左云县、萍乡市上栗县、中山市港口镇、重庆市江津区
周口市沈丘县、广西玉林市陆川县、枣庄市滕州市、兰州市皋兰县、广西河池市南丹县
广州市白云区、白沙黎族自治县打安镇、宜昌市宜都市、长治市武乡县、阜新市彰武县、汕头市龙湖区
吉林市蛟河市、西宁市湟源县、黔南龙里县、泉州市德化县、镇江市丹徒区、怀化市辰溪县、广西百色市右江区、万宁市后安镇、攀枝花市盐边县、铜川市王益区
曲靖市麒麟区、滁州市天长市、上饶市弋阳县、嘉峪关市新城镇、保亭黎族苗族自治县什玲、临汾市隰县
南充市南部县、泰州市海陵区、红河绿春县、攀枝花市东区、绵阳市游仙区、宜昌市五峰土家族自治县、怀化市溆浦县
成都市锦江区、文昌市昌洒镇、赣州市兴国县、泸州市纳溪区、吉林市船营区
澄迈县加乐镇、内江市东兴区、台州市椒江区、深圳市福田区、临高县加来镇、淮安市盱眙县
德阳市中江县、阿坝藏族羌族自治州黑水县、澄迈县大丰镇、遵义市余庆县、延安市延川县、毕节市七星关区、泰州市海陵区、眉山市丹棱县、湛江市坡头区
新乡市卫滨区、金华市武义县、重庆市酉阳县、洛阳市洛龙区、中山市坦洲镇、阜阳市颍上县、昆明市寻甸回族彝族自治县、内蒙古鄂尔多斯市东胜区、常州市溧阳市、临沧市凤庆县
广西桂林市永福县、内蒙古兴安盟突泉县、温州市乐清市、广西梧州市长洲区、黄石市铁山区、台州市路桥区、鸡西市梨树区
安康市旬阳市、连云港市东海县、凉山冕宁县、驻马店市驿城区、汕头市龙湖区、甘孜雅江县
遵义市桐梓县、内蒙古鄂尔多斯市伊金霍洛旗、赣州市上犹县、运城市新绛县、昌江黎族自治县七叉镇
东营市东营区、南阳市卧龙区、北京市延庆区、昆明市宜良县、吉安市新干县、成都市金堂县
内蒙古乌兰察布市集宁区、昆明市禄劝彝族苗族自治县、内江市隆昌市、松原市扶余市、东莞市沙田镇、广西北海市合浦县、阜新市彰武县、内蒙古赤峰市翁牛特旗、广西桂林市阳朔县
黔东南镇远县、泸州市泸县、鄂州市梁子湖区、上海市杨浦区、运城市盐湖区、江门市鹤山市、广西百色市靖西市
中山市横栏镇、平凉市庄浪县、南平市政和县、湛江市赤坎区、绵阳市涪城区
开封市禹王台区、内蒙古呼和浩特市玉泉区、海南共和县、乐山市马边彝族自治县、长沙市天心区、驻马店市确山县、南充市营山县、昆明市晋宁区、黔东南岑巩县
玉溪市峨山彝族自治县、长治市长子县、宁夏固原市西吉县、榆林市横山区、德州市武城县、三明市沙县区、连云港市灌南县、天水市张家川回族自治县、成都市青羊区、长治市武乡县
中山市东升镇、南京市浦口区、牡丹江市海林市、果洛久治县、随州市广水市、镇江市句容市、文山西畴县、万宁市龙滚镇、鹰潭市贵溪市
北京市平谷区、安庆市太湖县、广西百色市田东县、岳阳市临湘市、文山富宁县、澄迈县大丰镇、沈阳市新民市、文昌市抱罗镇、内蒙古通辽市开鲁县
泰州市靖江市、定西市临洮县、朔州市朔城区、大兴安岭地区松岭区、新乡市长垣市、四平市双辽市、济宁市梁山县、衢州市衢江区
宝鸡市陇县、广西柳州市融安县、大理剑川县、东莞市高埗镇、丽江市玉龙纳西族自治县、汕尾市陆丰市、重庆市永川区、张掖市民乐县、茂名市信宜市、太原市阳曲县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】