全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

海逸锅炉快速响应专线

发布时间:
海逸锅炉全国维修服务热线全国统一







海逸锅炉快速响应专线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









海逸锅炉售后维修服务电话24小时联系方式(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





海逸锅炉故障快速报修

海逸锅炉预约服务









专业咨询解答:客服团队专业解答,帮助您快速了解产品信息。




海逸锅炉维修全国服务电话









海逸锅炉全国售后专线

 贵阳市乌当区、荆州市石首市、泉州市惠安县、平顶山市鲁山县、玉树玉树市、洛阳市栾川县、铜仁市思南县





温州市龙湾区、怀化市通道侗族自治县、运城市闻喜县、亳州市涡阳县、内江市威远县、五指山市番阳、平顶山市鲁山县、东方市天安乡









广西钦州市钦南区、黄南泽库县、忻州市岢岚县、温州市龙湾区、菏泽市成武县、陵水黎族自治县隆广镇、陇南市两当县、攀枝花市米易县、铜陵市义安区









蚌埠市五河县、东营市利津县、九江市浔阳区、广西河池市巴马瑶族自治县、重庆市武隆区、无锡市滨湖区









青岛市即墨区、恩施州宣恩县、韶关市乐昌市、大连市中山区、朔州市应县、白银市会宁县、甘孜巴塘县









临汾市大宁县、中山市民众镇、文昌市东阁镇、广西河池市罗城仫佬族自治县、宜昌市猇亭区









哈尔滨市阿城区、烟台市海阳市、广西钦州市钦南区、铁岭市银州区、渭南市临渭区









上海市青浦区、梅州市兴宁市、鹤壁市淇滨区、内蒙古呼和浩特市托克托县、陇南市徽县、贵阳市开阳县、淄博市沂源县、丽江市玉龙纳西族自治县









陇南市礼县、温州市乐清市、朔州市山阴县、重庆市垫江县、河源市龙川县、广西南宁市兴宁区









商丘市虞城县、佳木斯市汤原县、齐齐哈尔市克山县、广安市武胜县、岳阳市岳阳县









攀枝花市米易县、白沙黎族自治县牙叉镇、赣州市宁都县、澄迈县瑞溪镇、杭州市桐庐县、东莞市长安镇、齐齐哈尔市拜泉县









沈阳市沈河区、蚌埠市蚌山区、鹤壁市山城区、十堰市郧西县、德宏傣族景颇族自治州梁河县、甘南夏河县









衡阳市衡阳县、江门市江海区、龙岩市上杭县、洛阳市老城区、西双版纳勐腊县









娄底市娄星区、洛阳市栾川县、海西蒙古族格尔木市、宿迁市沭阳县、濮阳市南乐县









鸡西市滴道区、广西南宁市良庆区、通化市集安市、泰州市高港区、本溪市南芬区、广西百色市德保县、金华市永康市、合肥市庐江县、海西蒙古族乌兰县









景德镇市乐平市、襄阳市襄州区、牡丹江市海林市、新乡市凤泉区、广西防城港市港口区、红河泸西县、屯昌县新兴镇、陵水黎族自治县椰林镇、黄冈市麻城市、南阳市西峡县









海口市龙华区、海东市互助土族自治县、深圳市罗湖区、长沙市雨花区、宜宾市长宁县、湘潭市岳塘区、南京市六合区、安康市岚皋县、齐齐哈尔市甘南县

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文