400服务电话:400-1865-909(点击咨询)
莫爵红酒柜科安全国24小时售后服务400客服热线
莫爵红酒柜售后服务全国24小时售后服务电话号码
莫爵红酒柜维护客服热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
莫爵红酒柜专业服务(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
莫爵红酒柜售服热线
莫爵红酒柜售后维修中心电话查询
紧急维修绿色通道,优先处理:对于紧急维修需求,我们提供绿色通道服务,优先安排技师上门处理,确保客户家电尽快恢复正常使用。
专业维修论坛:建立专业维修论坛,为客户提供交流平台,分享维修经验和技巧。
莫爵红酒柜客服热线指南
莫爵红酒柜维修服务电话全国服务区域:
济宁市梁山县、杭州市下城区、内蒙古锡林郭勒盟镶黄旗、汉中市佛坪县、阿坝藏族羌族自治州小金县
屯昌县南吕镇、黄石市阳新县、南阳市桐柏县、保山市腾冲市、温州市鹿城区、潍坊市昌邑市、景德镇市乐平市、内蒙古鄂尔多斯市乌审旗
嘉兴市桐乡市、雅安市芦山县、黄冈市黄州区、德州市庆云县、徐州市沛县、漳州市平和县、昆明市呈贡区、肇庆市端州区
广西桂林市叠彩区、葫芦岛市绥中县、惠州市惠阳区、成都市郫都区、咸宁市通山县、东方市东河镇、黄冈市团风县、中山市坦洲镇
九江市都昌县、东莞市东城街道、楚雄元谋县、厦门市同安区、广西崇左市大新县、广西崇左市扶绥县
黔东南黎平县、通化市梅河口市、怀化市洪江市、榆林市定边县、甘南临潭县、临汾市尧都区、徐州市丰县、德州市庆云县、连云港市东海县、郴州市桂阳县
南平市建瓯市、赣州市大余县、南阳市新野县、济宁市微山县、杭州市江干区、衢州市常山县、定西市渭源县、天水市麦积区、内蒙古鄂尔多斯市鄂托克旗
杭州市滨江区、九江市共青城市、广州市荔湾区、广西贵港市港南区、榆林市横山区
澄迈县桥头镇、三明市建宁县、广西桂林市兴安县、绥化市庆安县、南充市蓬安县、枣庄市峄城区、凉山雷波县
万宁市后安镇、乐东黎族自治县志仲镇、温州市龙湾区、文昌市公坡镇、甘孜乡城县、大理云龙县、郑州市新密市、南昌市新建区、广西防城港市上思县、广西河池市南丹县
黄南尖扎县、哈尔滨市松北区、武汉市汉南区、德州市武城县、盐城市滨海县、重庆市大渡口区、湛江市遂溪县、云浮市郁南县、玉溪市红塔区、东方市东河镇
驻马店市驿城区、福州市鼓楼区、衡阳市雁峰区、汕头市濠江区、昆明市西山区、琼海市长坡镇、无锡市滨湖区、福州市连江县
泰安市肥城市、淮安市洪泽区、成都市金牛区、广西百色市平果市、咸阳市杨陵区、周口市鹿邑县、潍坊市坊子区、宁德市柘荣县
永州市江永县、张掖市高台县、丹东市宽甸满族自治县、重庆市荣昌区、宁德市周宁县、雅安市天全县、广西梧州市藤县、临沧市凤庆县、沈阳市大东区、中山市坦洲镇
亳州市涡阳县、台州市路桥区、内蒙古锡林郭勒盟苏尼特左旗、黔南福泉市、绍兴市越城区、西宁市湟中区、忻州市定襄县、东莞市莞城街道、潍坊市青州市、吉林市舒兰市
重庆市江北区、榆林市榆阳区、齐齐哈尔市铁锋区、阳泉市矿区、武汉市东西湖区、六安市叶集区、黄石市黄石港区、榆林市横山区、惠州市惠东县
漳州市芗城区、德州市陵城区、东营市河口区、哈尔滨市平房区、哈尔滨市阿城区、无锡市新吴区、徐州市云龙区、深圳市南山区、内蒙古赤峰市宁城县
宁波市宁海县、内蒙古呼伦贝尔市扎赉诺尔区、焦作市博爱县、广西崇左市宁明县、信阳市浉河区、泸州市合江县、渭南市潼关县、黔东南雷山县、巴中市通江县
吕梁市孝义市、南昌市东湖区、伊春市友好区、齐齐哈尔市富拉尔基区、青岛市市南区、牡丹江市穆棱市、赣州市南康区
淄博市张店区、衢州市开化县、琼海市塔洋镇、汕头市潮南区、河源市连平县、巴中市巴州区
绥化市青冈县、衡阳市常宁市、信阳市浉河区、昌江黎族自治县石碌镇、葫芦岛市建昌县、长沙市长沙县
亳州市蒙城县、聊城市阳谷县、十堰市郧阳区、忻州市代县、平凉市崆峒区、海西蒙古族都兰县、佳木斯市汤原县、广西百色市田林县、焦作市解放区
烟台市莱州市、上饶市铅山县、龙岩市连城县、榆林市佳县、蚌埠市怀远县、屯昌县屯城镇、大庆市让胡路区、广西河池市南丹县、潍坊市安丘市、海南兴海县
白城市洮南市、德阳市绵竹市、定西市临洮县、广西桂林市恭城瑶族自治县、海北门源回族自治县、绥化市海伦市、延边龙井市、广西南宁市宾阳县、上海市杨浦区
汕尾市陆丰市、文昌市东郊镇、莆田市秀屿区、上饶市信州区、揭阳市普宁市、遂宁市安居区、文昌市潭牛镇、焦作市山阳区、内蒙古乌兰察布市丰镇市、临高县和舍镇
上海市徐汇区、宜昌市远安县、重庆市潼南区、天津市武清区、江门市恩平市、大庆市让胡路区、乐山市夹江县、儋州市光村镇
普洱市西盟佤族自治县、汉中市南郑区、辽源市龙山区、凉山雷波县、渭南市富平县、宝鸡市凤翔区、雅安市天全县、乐山市峨眉山市、延边龙井市
400服务电话:400-1865-909(点击咨询)
莫爵红酒柜急修热线
莫爵红酒柜售后技术支持中心
莫爵红酒柜维修指南:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
莫爵红酒柜全国联保(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
莫爵红酒柜400客服管家
莫爵红酒柜24小时人工服务热线
环保包装材料:使用环保包装材料,减少维修过程中的环境负担。
专业的售后服务团队,不仅技术过硬,更具备良好的沟通能力和服务意识。
莫爵红酒柜用户服务维修中心
莫爵红酒柜维修服务电话全国服务区域:
牡丹江市阳明区、金华市磐安县、张家界市桑植县、辽阳市灯塔市、内蒙古锡林郭勒盟正蓝旗、锦州市北镇市、吉安市新干县、三明市将乐县
淮安市洪泽区、烟台市莱山区、红河蒙自市、衡阳市衡山县、广西桂林市雁山区、开封市顺河回族区、池州市贵池区、德州市德城区
铜仁市碧江区、南通市海安市、白沙黎族自治县阜龙乡、邵阳市北塔区、澄迈县加乐镇
黔西南贞丰县、双鸭山市集贤县、湛江市赤坎区、绵阳市三台县、周口市太康县、东莞市洪梅镇
贵阳市白云区、广西河池市都安瑶族自治县、天津市河北区、襄阳市谷城县、宜宾市南溪区、齐齐哈尔市碾子山区、凉山西昌市、安阳市北关区
郑州市管城回族区、达州市大竹县、中山市三乡镇、盘锦市兴隆台区、苏州市常熟市
阿坝藏族羌族自治州红原县、亳州市蒙城县、广西梧州市苍梧县、西安市蓝田县、抚顺市清原满族自治县、安庆市怀宁县、沈阳市苏家屯区、黄石市阳新县、齐齐哈尔市碾子山区
广西河池市东兰县、抚州市资溪县、马鞍山市当涂县、泰州市海陵区、衡阳市耒阳市
齐齐哈尔市昂昂溪区、深圳市罗湖区、嘉兴市嘉善县、重庆市云阳县、潮州市潮安区、昆明市富民县、重庆市奉节县
中山市南头镇、马鞍山市花山区、济南市商河县、信阳市罗山县、楚雄双柏县、泉州市泉港区、漯河市临颍县、汕尾市海丰县
绵阳市游仙区、临汾市曲沃县、郑州市管城回族区、阳泉市郊区、内江市东兴区、海口市美兰区、天津市红桥区、大庆市肇源县
淮北市杜集区、宁波市海曙区、白山市靖宇县、焦作市山阳区、朔州市应县、广元市苍溪县、陇南市西和县
曲靖市马龙区、常州市武进区、阿坝藏族羌族自治州黑水县、西安市灞桥区、黔西南晴隆县、阳泉市平定县、重庆市长寿区
吕梁市离石区、广西百色市右江区、文昌市重兴镇、常德市石门县、保山市施甸县、陇南市礼县、宜宾市江安县
自贡市富顺县、安庆市岳西县、临夏康乐县、宝鸡市金台区、安康市紫阳县、烟台市蓬莱区、佳木斯市抚远市、潍坊市奎文区、宜宾市珙县、广西桂林市临桂区
上海市浦东新区、苏州市吴中区、孝感市孝南区、丹东市宽甸满族自治县、三沙市南沙区、福州市福清市、玉树称多县、阳泉市矿区、广元市青川县
青岛市即墨区、海口市秀英区、普洱市景东彝族自治县、台州市路桥区、忻州市繁峙县、中山市五桂山街道、德州市夏津县、开封市尉氏县、哈尔滨市双城区、临沂市蒙阴县
德宏傣族景颇族自治州盈江县、郴州市永兴县、吕梁市兴县、驻马店市正阳县、洛阳市老城区、抚州市金溪县、内蒙古鄂尔多斯市杭锦旗、庆阳市华池县、五指山市南圣
三明市三元区、随州市随县、西安市长安区、宁夏吴忠市青铜峡市、四平市铁西区、徐州市铜山区、福州市福清市、湛江市廉江市、鸡西市城子河区、台州市黄岩区
广西百色市西林县、齐齐哈尔市富裕县、甘孜新龙县、鹤岗市工农区、内蒙古呼伦贝尔市扎赉诺尔区
牡丹江市绥芬河市、昆明市官渡区、陇南市两当县、永州市新田县、淄博市桓台县
岳阳市汨罗市、咸阳市旬邑县、湘西州凤凰县、三明市宁化县、黔南三都水族自治县
红河蒙自市、大同市阳高县、深圳市光明区、三明市永安市、四平市伊通满族自治县、衡阳市衡南县、绍兴市新昌县、白沙黎族自治县元门乡、宁波市余姚市
陇南市康县、巴中市通江县、通化市集安市、北京市昌平区、衢州市龙游县、辽源市东辽县、忻州市河曲县、东莞市万江街道
郑州市新密市、赣州市定南县、曲靖市师宗县、内蒙古乌兰察布市集宁区、三明市泰宁县、澄迈县永发镇、乐东黎族自治县大安镇、南平市延平区、铜仁市沿河土家族自治县
临高县临城镇、漳州市南靖县、淮南市潘集区、广西桂林市永福县、广安市广安区
临沂市郯城县、上海市崇明区、聊城市冠县、安顺市西秀区、大庆市肇州县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】