400服务电话:400-1865-909(点击咨询)
煊缤指纹锁售后服务电话号码售后全国客服
煊缤指纹锁上门急修服务
煊缤指纹锁售后维修网点覆盖:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
煊缤指纹锁维修点电话24小时(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
煊缤指纹锁售后维修中心24小时服务热线全国网点
煊缤指纹锁售后服务电话24小时上门服务
诚信为本,口碑传承:我们坚持诚信经营,以优质的服务赢得客户的口碑。我们相信,只有客户满意,我们的品牌才能传承久远。
维修案例分享,传递经验智慧:我们定期发布维修案例分享,将成功解决的复杂案例整理成册,供技师和客户学习参考,传递经验智慧。
煊缤指纹锁官方24小时售后热线
煊缤指纹锁维修服务电话全国服务区域:
衡阳市石鼓区、乐山市五通桥区、湖州市长兴县、大同市新荣区、甘孜雅江县、宁波市奉化区、辽源市东丰县
南京市栖霞区、黔东南雷山县、杭州市上城区、甘孜德格县、辽阳市文圣区、甘南卓尼县
西安市新城区、广西南宁市兴宁区、广西梧州市长洲区、成都市彭州市、宝鸡市金台区
合肥市庐阳区、运城市垣曲县、泸州市古蔺县、鹰潭市月湖区、天津市红桥区
福州市马尾区、忻州市忻府区、丹东市振兴区、南充市高坪区、齐齐哈尔市拜泉县、伊春市友好区、丽水市景宁畲族自治县、中山市东区街道、聊城市高唐县
达州市通川区、广西南宁市江南区、宁夏固原市泾源县、内蒙古巴彦淖尔市磴口县、鹤岗市萝北县、绵阳市北川羌族自治县、广州市白云区、澄迈县老城镇
内蒙古鄂尔多斯市鄂托克旗、武汉市江岸区、黔东南雷山县、广元市青川县、文山富宁县、内江市隆昌市、东莞市谢岗镇
临汾市乡宁县、潮州市饶平县、上饶市广丰区、宝鸡市千阳县、内蒙古乌兰察布市商都县、绵阳市盐亭县、万宁市龙滚镇、怀化市会同县
鹤岗市萝北县、黄冈市黄梅县、广元市利州区、张家界市武陵源区、平顶山市宝丰县
广西桂林市叠彩区、铁岭市西丰县、上饶市玉山县、昆明市盘龙区、太原市杏花岭区、漯河市临颍县
长治市上党区、宜宾市珙县、舟山市嵊泗县、乐东黎族自治县利国镇、抚顺市顺城区、重庆市酉阳县、广西南宁市隆安县
盐城市大丰区、甘孜石渠县、内蒙古包头市石拐区、池州市青阳县、天水市张家川回族自治县、佳木斯市汤原县、盐城市建湖县、临沧市云县、凉山甘洛县
长治市屯留区、文山马关县、佳木斯市桦南县、揭阳市揭东区、荆州市沙市区
湛江市遂溪县、延安市富县、济南市章丘区、福州市平潭县、江门市蓬江区、温州市洞头区、阳江市阳春市、海东市互助土族自治县、渭南市华阴市、鞍山市千山区
齐齐哈尔市铁锋区、吉林市昌邑区、达州市通川区、武汉市洪山区、重庆市万州区、儋州市排浦镇、乐山市马边彝族自治县
焦作市沁阳市、连云港市灌云县、德阳市罗江区、怒江傈僳族自治州福贡县、白沙黎族自治县荣邦乡
乐山市沙湾区、万宁市万城镇、新乡市原阳县、西宁市湟中区、阳泉市盂县、荆州市洪湖市、内蒙古呼和浩特市土默特左旗、广西河池市凤山县、菏泽市成武县
广西崇左市凭祥市、红河蒙自市、鹤岗市向阳区、雅安市宝兴县、临汾市侯马市、内蒙古呼伦贝尔市陈巴尔虎旗
广元市青川县、甘南夏河县、白沙黎族自治县七坊镇、张家界市桑植县、宜春市袁州区、焦作市温县、广州市越秀区
儋州市中和镇、北京市门头沟区、酒泉市肃州区、普洱市景谷傣族彝族自治县、西安市周至县、潍坊市寿光市、荆门市京山市、烟台市福山区、武威市古浪县
广西来宾市武宣县、沈阳市康平县、新余市渝水区、甘孜雅江县、晋中市左权县、临沧市镇康县、上饶市余干县、新乡市牧野区、内蒙古赤峰市喀喇沁旗
东莞市厚街镇、汉中市南郑区、鸡西市梨树区、重庆市巴南区、连云港市连云区、忻州市宁武县、南充市高坪区、南昌市青山湖区
广西防城港市东兴市、成都市崇州市、吕梁市交口县、昭通市永善县、临高县加来镇、湛江市麻章区、澄迈县中兴镇
中山市东凤镇、延边汪清县、红河开远市、自贡市自流井区、陵水黎族自治县三才镇、临沂市蒙阴县、伊春市嘉荫县、绥化市绥棱县、郴州市苏仙区、德阳市绵竹市
中山市南区街道、梅州市大埔县、濮阳市台前县、温州市泰顺县、张掖市肃南裕固族自治县、衡阳市衡南县、咸宁市赤壁市、南昌市南昌县、中山市中山港街道、昆明市石林彝族自治县
大理永平县、黔南瓮安县、广西贺州市平桂区、宁夏吴忠市青铜峡市、邵阳市武冈市、萍乡市湘东区、德州市陵城区、咸阳市礼泉县、黄山市屯溪区
广西北海市铁山港区、辽阳市辽阳县、抚州市南城县、淮安市淮阴区、雅安市芦山县
400服务电话:400-1865-909(点击咨询)
煊缤指纹锁售后维修客服服务热线全国
煊缤指纹锁24小时厂家附近服务电话热线
煊缤指纹锁热线守护:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
煊缤指纹锁售后维修电话厂家网点服务热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
煊缤指纹锁全国售后服务维修点电话
煊缤指纹锁售后服务网点搜索
维修服务多语种服务,服务无国界:提供多语种服务,包括英语、韩语、日语等,满足不同国籍客户的语言需求,服务无国界。
长期合作计划,优惠更多:针对长期合作或批量维修需求的客户,我们提供专属的合作计划和优惠政策,降低您的维修成本。
煊缤指纹锁24小时全国维修热线
煊缤指纹锁维修服务电话全国服务区域:
泰安市肥城市、滁州市南谯区、南阳市邓州市、普洱市宁洱哈尼族彝族自治县、雅安市荥经县、长治市沁县、龙岩市永定区、松原市长岭县、屯昌县新兴镇、六盘水市钟山区
大庆市大同区、海东市平安区、内蒙古赤峰市喀喇沁旗、信阳市平桥区、连云港市灌云县
文昌市锦山镇、哈尔滨市阿城区、朔州市应县、朝阳市双塔区、晋中市和顺县、平顶山市湛河区、广西崇左市扶绥县、宜宾市叙州区、黔东南施秉县
长春市双阳区、邵阳市新宁县、成都市新津区、株洲市荷塘区、沈阳市铁西区
宁夏银川市永宁县、昆明市宜良县、九江市彭泽县、黑河市孙吴县、安庆市潜山市、衡阳市珠晖区、内蒙古包头市昆都仑区
内蒙古鄂尔多斯市康巴什区、永州市新田县、黔西南兴仁市、南充市高坪区、平顶山市新华区、许昌市建安区
洛阳市伊川县、文昌市蓬莱镇、德阳市什邡市、天水市武山县、临高县调楼镇、北京市丰台区
泰州市靖江市、随州市广水市、邵阳市双清区、昆明市呈贡区、成都市温江区
鄂州市鄂城区、临汾市蒲县、渭南市韩城市、长沙市天心区、苏州市张家港市、沈阳市浑南区、海东市平安区、广元市旺苍县、肇庆市封开县、黔南瓮安县
甘孜康定市、江门市新会区、邵阳市洞口县、淮南市田家庵区、德州市陵城区、株洲市芦淞区、毕节市金沙县、汕尾市城区
吉林市桦甸市、广西防城港市上思县、宿州市萧县、果洛甘德县、北京市丰台区、吕梁市兴县、扬州市广陵区、湘潭市岳塘区、长治市沁县
郑州市金水区、株洲市渌口区、六盘水市水城区、西安市周至县、广西百色市田阳区、马鞍山市博望区、连云港市海州区、广西南宁市兴宁区
温州市平阳县、玉溪市华宁县、内蒙古通辽市科尔沁左翼中旗、朔州市应县、娄底市涟源市、宿迁市泗洪县、永州市新田县、果洛久治县、丽江市华坪县
内蒙古呼伦贝尔市扎兰屯市、十堰市竹山县、成都市金堂县、内蒙古通辽市科尔沁左翼中旗、台州市温岭市、广西桂林市平乐县
天津市北辰区、深圳市龙岗区、怀化市洪江市、大理洱源县、眉山市丹棱县、滨州市滨城区、上海市闵行区、成都市简阳市
内蒙古锡林郭勒盟苏尼特左旗、儋州市兰洋镇、牡丹江市宁安市、延边汪清县、攀枝花市盐边县、郑州市新郑市、怀化市洪江市、广西崇左市扶绥县、荆州市荆州区
达州市开江县、齐齐哈尔市拜泉县、南充市阆中市、内蒙古赤峰市巴林左旗、济南市济阳区
广西河池市南丹县、海南共和县、淮北市相山区、天津市武清区、定西市临洮县、临沂市郯城县、重庆市忠县、玉树治多县、辽源市龙山区
东莞市虎门镇、广安市广安区、四平市公主岭市、湛江市吴川市、甘孜丹巴县、苏州市昆山市、德州市武城县、肇庆市怀集县、果洛班玛县、东莞市中堂镇
揭阳市普宁市、果洛达日县、河源市紫金县、辽源市西安区、金昌市永昌县、广西桂林市雁山区、直辖县仙桃市、昆明市嵩明县、曲靖市富源县
阜阳市界首市、重庆市梁平区、阳江市阳春市、屯昌县屯城镇、淮安市洪泽区、牡丹江市海林市、张家界市桑植县、郑州市中牟县
盐城市盐都区、咸阳市兴平市、三门峡市陕州区、淄博市张店区、三亚市海棠区、内蒙古包头市青山区、许昌市鄢陵县、九江市彭泽县、徐州市新沂市
白银市平川区、雅安市雨城区、重庆市荣昌区、白山市江源区、文山文山市、鹰潭市贵溪市、玉溪市华宁县、绥化市望奎县、绵阳市梓潼县、绥化市海伦市
黔东南岑巩县、文昌市东郊镇、焦作市孟州市、临夏临夏县、天水市秦安县
安庆市宿松县、赣州市章贡区、临沂市沂水县、温州市永嘉县、晋中市左权县、衡阳市常宁市、澄迈县仁兴镇
黄南尖扎县、汕头市金平区、湘西州古丈县、鸡西市滴道区、江门市江海区、白沙黎族自治县七坊镇、甘南卓尼县
本溪市本溪满族自治县、通化市辉南县、成都市蒲江县、酒泉市玉门市、临汾市尧都区、三亚市吉阳区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】