樱花热水器24小时厂家全国客服24小时预约网点
樱花热水器官方客服售后电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
樱花热水器全国24小时维修客服电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
樱花热水器厂家总部售后客服附近热线电话
樱花热水器24小时全国人工400客服中心
在维修过程中,我们会与您保持密切联系,及时告知您维修进度和结果。
樱花热水器全国上门修客服
樱花热水器售后服务全国热线预约维修
攀枝花市盐边县、厦门市海沧区、深圳市龙岗区、菏泽市定陶区、海南贵德县、宣城市旌德县
舟山市岱山县、娄底市娄星区、肇庆市广宁县、玉树囊谦县、宁波市宁海县
酒泉市肃州区、内蒙古包头市白云鄂博矿区、平顶山市叶县、汕尾市海丰县、临高县新盈镇、台州市黄岩区、成都市简阳市、九江市柴桑区、衢州市柯城区
商丘市宁陵县、商洛市商州区、白银市靖远县、铁岭市西丰县、广西柳州市融水苗族自治县
南充市嘉陵区、陵水黎族自治县英州镇、青岛市黄岛区、江门市台山市、驻马店市泌阳县、齐齐哈尔市泰来县、北京市延庆区、丽水市松阳县、重庆市巫山县、成都市金堂县
芜湖市湾沚区、十堰市竹山县、绵阳市平武县、连云港市东海县、松原市长岭县、白沙黎族自治县金波乡、五指山市毛阳、齐齐哈尔市建华区
绍兴市柯桥区、安阳市文峰区、广西百色市德保县、鸡西市麻山区、海东市循化撒拉族自治县、晋中市灵石县
广西来宾市兴宾区、抚州市东乡区、六盘水市钟山区、平顶山市舞钢市、漯河市郾城区、朔州市右玉县
广西钦州市灵山县、临高县多文镇、广西桂林市资源县、大兴安岭地区加格达奇区、乐山市沙湾区、临沧市耿马傣族佤族自治县、文昌市翁田镇、海口市琼山区、洛阳市伊川县
广西钦州市钦南区、哈尔滨市方正县、湘西州吉首市、赣州市上犹县、宿迁市泗洪县、烟台市福山区、昌江黎族自治县王下乡、九江市柴桑区、武汉市武昌区、西安市新城区
张家界市武陵源区、绍兴市诸暨市、晋中市太谷区、阿坝藏族羌族自治州松潘县、昆明市西山区、舟山市定海区、阿坝藏族羌族自治州小金县、内蒙古呼和浩特市武川县、咸阳市礼泉县、三门峡市灵宝市
赣州市宁都县、天津市西青区、泸州市古蔺县、南阳市社旗县、怀化市鹤城区、广西梧州市藤县
佳木斯市富锦市、铜陵市郊区、荆州市江陵县、榆林市佳县、直辖县潜江市、朔州市朔城区、保山市施甸县、澄迈县老城镇、恩施州恩施市
铜仁市思南县、内蒙古赤峰市宁城县、湖州市德清县、梅州市五华县、孝感市云梦县、连云港市东海县、荆门市沙洋县、恩施州利川市、宁夏吴忠市同心县、内蒙古鄂尔多斯市伊金霍洛旗
盐城市东台市、鞍山市岫岩满族自治县、三明市沙县区、牡丹江市绥芬河市、晋中市榆社县、牡丹江市宁安市
广西崇左市龙州县、驻马店市驿城区、临汾市吉县、黑河市五大连池市、直辖县潜江市
内蒙古巴彦淖尔市乌拉特后旗、定西市漳县、泉州市丰泽区、葫芦岛市建昌县、白沙黎族自治县牙叉镇、广西柳州市鱼峰区、永州市道县、安康市岚皋县、庆阳市庆城县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】