京顿保险柜全国24小时客服售后维修服务
京顿保险柜24小时全国统一客服热线电话(400客服中心):(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
京顿保险柜维修预约中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
京顿保险柜官方24小时售后热线
京顿保险柜24小时售后服务怎么样_全国统一400售后热线电话
维修师傅上门服务时间预约:客户可以根据自己的时间安排预约维修师傅的上门服务时间,确保服务更加便捷。
京顿保险柜24小时厂家维修24小时客服电话
京顿保险柜品牌统一客服热线
惠州市惠城区、安阳市内黄县、西宁市城东区、安阳市北关区、广西桂林市全州县、宜春市铜鼓县、白沙黎族自治县邦溪镇、佛山市南海区、黔东南黄平县
广西桂林市秀峰区、德宏傣族景颇族自治州芒市、屯昌县新兴镇、丽水市景宁畲族自治县、福州市仓山区、西安市高陵区
广西南宁市横州市、乐东黎族自治县千家镇、内蒙古赤峰市敖汉旗、绵阳市游仙区、伊春市大箐山县、黔东南黎平县、文昌市抱罗镇、广西柳州市融水苗族自治县、忻州市忻府区
济南市商河县、上饶市广丰区、内蒙古兴安盟科尔沁右翼中旗、南昌市西湖区、菏泽市成武县、大连市中山区、广西崇左市大新县、商丘市夏邑县、成都市都江堰市、镇江市丹阳市
潍坊市寿光市、眉山市洪雅县、肇庆市德庆县、马鞍山市雨山区、亳州市蒙城县、鹤壁市浚县、阜阳市阜南县、武汉市黄陂区、文山马关县、衡阳市衡南县
连云港市灌云县、东莞市莞城街道、娄底市娄星区、周口市项城市、西安市新城区、德宏傣族景颇族自治州陇川县
白沙黎族自治县打安镇、宝鸡市陈仓区、本溪市桓仁满族自治县、驻马店市泌阳县、汉中市城固县、上海市金山区、滁州市琅琊区、新余市渝水区
大连市西岗区、惠州市惠阳区、湖州市德清县、平凉市静宁县、泉州市丰泽区、云浮市郁南县、九江市彭泽县
舟山市岱山县、娄底市娄星区、肇庆市广宁县、玉树囊谦县、宁波市宁海县
大理剑川县、万宁市万城镇、临夏康乐县、广西桂林市永福县、常州市武进区、珠海市金湾区、潍坊市临朐县、雅安市石棉县
长治市平顺县、达州市达川区、广元市朝天区、太原市晋源区、广西百色市平果市、东莞市凤岗镇、厦门市海沧区
滁州市天长市、德阳市广汉市、阜阳市太和县、毕节市赫章县、宝鸡市凤县、宁夏吴忠市红寺堡区
澄迈县老城镇、广西梧州市万秀区、内蒙古呼伦贝尔市根河市、迪庆维西傈僳族自治县、澄迈县桥头镇、宝鸡市千阳县
宜春市高安市、临沧市永德县、白山市临江市、东莞市清溪镇、宜春市上高县、大兴安岭地区漠河市
内蒙古呼伦贝尔市额尔古纳市、徐州市泉山区、黔东南凯里市、北京市海淀区、甘南夏河县、济南市市中区、雅安市天全县、琼海市阳江镇、大理宾川县
铜川市印台区、广西贵港市桂平市、常州市天宁区、果洛久治县、淄博市临淄区、自贡市自流井区、七台河市桃山区、七台河市新兴区
青岛市平度市、三门峡市湖滨区、佳木斯市郊区、赣州市瑞金市、辽阳市宏伟区、甘孜乡城县、曲靖市罗平县、乐山市沐川县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】