400服务电话:400-1865-909(点击咨询)
京顿保险柜全国网点服务
京顿保险柜厂家总部售后电话24小时人工电话号码
京顿保险柜紧急售后服务专线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
京顿保险柜客服电话全国全国统一24小时客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
京顿保险柜维修上门维修电话
京顿保险柜24小时全国统一售后服务中心
维修服务家电保险服务,额外保障:与保险公司合作,提供家电保险服务,为客户的家电提供额外的保障,减轻意外损失的风险。
专业的售后团队,凭借丰富经验和精湛技艺,解决您的所有设备问题。
京顿保险柜全国各点服务电话热线
京顿保险柜维修服务电话全国服务区域:
揭阳市揭西县、安阳市北关区、襄阳市保康县、凉山甘洛县、广元市昭化区、鸡西市虎林市、泉州市永春县、凉山美姑县、普洱市宁洱哈尼族彝族自治县、深圳市盐田区
无锡市惠山区、上饶市铅山县、重庆市忠县、郑州市上街区、邵阳市隆回县、江门市江海区
铁岭市清河区、常德市武陵区、南充市营山县、黄山市祁门县、内蒙古包头市九原区、韶关市乐昌市、抚顺市望花区、昭通市镇雄县、镇江市扬中市
楚雄大姚县、广州市花都区、六盘水市水城区、忻州市原平市、临夏临夏县、甘孜石渠县、莆田市仙游县
昆明市五华区、荆州市松滋市、广西桂林市资源县、南充市高坪区、常德市武陵区、赣州市章贡区、金华市东阳市、白银市靖远县、沈阳市沈河区
成都市崇州市、屯昌县乌坡镇、忻州市代县、济南市钢城区、宜宾市翠屏区、龙岩市连城县
安顺市西秀区、临汾市翼城县、东莞市企石镇、内蒙古巴彦淖尔市磴口县、池州市石台县、六盘水市六枝特区、黄石市下陆区、梅州市蕉岭县、哈尔滨市依兰县、广西柳州市柳北区
太原市万柏林区、牡丹江市西安区、泰安市岱岳区、潍坊市坊子区、铜仁市碧江区
哈尔滨市依兰县、黔西南安龙县、广西河池市罗城仫佬族自治县、聊城市东阿县、苏州市相城区、沈阳市和平区
合肥市瑶海区、中山市沙溪镇、南平市建阳区、昭通市镇雄县、烟台市龙口市、盐城市盐都区、信阳市罗山县、鸡西市鸡冠区、南阳市南召县
万宁市长丰镇、鸡西市梨树区、红河石屏县、安康市平利县、北京市丰台区
绵阳市北川羌族自治县、广西来宾市金秀瑶族自治县、阜新市太平区、台州市温岭市、潮州市湘桥区、洛阳市洛宁县
衡阳市耒阳市、东莞市石排镇、咸阳市兴平市、临汾市襄汾县、泰州市泰兴市、湛江市坡头区、德州市宁津县、西安市高陵区、哈尔滨市道外区
襄阳市保康县、太原市娄烦县、广元市朝天区、大庆市红岗区、临夏永靖县
五指山市通什、烟台市莱山区、南昌市新建区、烟台市龙口市、达州市大竹县、襄阳市老河口市、大连市庄河市、济南市市中区、鸡西市恒山区、大同市天镇县
杭州市桐庐县、邵阳市邵东市、铁岭市调兵山市、雅安市汉源县、双鸭山市宝清县、天津市南开区
海口市秀英区、锦州市凌海市、儋州市木棠镇、上海市宝山区、淄博市沂源县、伊春市南岔县、内蒙古通辽市开鲁县、忻州市定襄县、济宁市任城区
驻马店市泌阳县、福州市仓山区、衢州市江山市、济南市平阴县、阜新市新邱区
辽阳市辽阳县、内蒙古鄂尔多斯市乌审旗、黔南长顺县、台州市临海市、重庆市江津区、三明市大田县、广西北海市合浦县、无锡市梁溪区、赣州市赣县区、湘潭市雨湖区
铜川市王益区、十堰市竹山县、黔东南凯里市、吉林市昌邑区、丽水市松阳县、六安市舒城县、玉树玉树市、肇庆市封开县
自贡市贡井区、汕尾市城区、芜湖市弋江区、黄石市阳新县、南平市邵武市、南京市雨花台区、白沙黎族自治县青松乡、徐州市贾汪区、盐城市东台市
沈阳市大东区、大同市阳高县、广西百色市乐业县、张掖市高台县、大同市广灵县、焦作市沁阳市、昌江黎族自治县乌烈镇、海口市龙华区、泉州市鲤城区
杭州市滨江区、内蒙古通辽市开鲁县、淮安市涟水县、临高县博厚镇、重庆市北碚区、太原市阳曲县、滁州市全椒县、延边安图县
镇江市句容市、吕梁市离石区、郑州市中原区、广西玉林市福绵区、重庆市渝中区
福州市长乐区、遵义市赤水市、内蒙古兴安盟突泉县、东方市东河镇、黔南三都水族自治县、达州市宣汉县、万宁市和乐镇
南京市浦口区、曲靖市宣威市、咸阳市永寿县、荆门市掇刀区、宣城市绩溪县、广西百色市田林县、白沙黎族自治县荣邦乡、绵阳市三台县、邵阳市邵东市、上饶市万年县
盐城市大丰区、滨州市滨城区、延边图们市、遂宁市蓬溪县、红河个旧市、东莞市南城街道、绍兴市新昌县、聊城市东阿县
400服务电话:400-1865-909(点击咨询)
京顿保险柜售后预约通
京顿保险柜400售后热线
京顿保险柜全国24小时各市区售后受理客服中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
京顿保险柜400客服报修热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
京顿保险柜网点查询热线电话号码
京顿保险柜售后电话24小时售后服务热线
维修服务绩效考核:实施维修服务绩效考核制度,激励员工提升服务水平和工作效率。
专业客服团队,耐心解答您的所有问题。
京顿保险柜400客服人工维修服务电话号码-全国24小时统一维修网点热线
京顿保险柜维修服务电话全国服务区域:
宜昌市点军区、龙岩市漳平市、毕节市大方县、南阳市淅川县、驻马店市驿城区、张掖市肃南裕固族自治县、德宏傣族景颇族自治州盈江县
荆门市钟祥市、临沂市费县、盘锦市盘山县、天水市甘谷县、大同市天镇县、遵义市绥阳县、玉溪市通海县
定安县定城镇、杭州市富阳区、怀化市靖州苗族侗族自治县、黄石市西塞山区、阳泉市郊区、万宁市大茂镇、长治市黎城县、宁德市寿宁县、济宁市金乡县、洛阳市孟津区
乐山市沐川县、内蒙古呼伦贝尔市根河市、澄迈县永发镇、丽水市青田县、徐州市邳州市、西安市临潼区、泰安市泰山区、赣州市寻乌县
内蒙古呼和浩特市土默特左旗、海东市平安区、淄博市淄川区、温州市龙港市、怀化市中方县、咸宁市嘉鱼县、抚州市金溪县、连云港市海州区、宁夏吴忠市同心县
黔南三都水族自治县、本溪市明山区、庆阳市华池县、福州市仓山区、陵水黎族自治县光坡镇、乐山市峨边彝族自治县、玉溪市江川区、广西百色市靖西市
广西防城港市防城区、河源市东源县、内蒙古乌兰察布市卓资县、本溪市桓仁满族自治县、毕节市赫章县、漳州市云霄县、威海市荣成市
海南贵德县、洛阳市瀍河回族区、儋州市王五镇、遂宁市射洪市、昆明市西山区、内蒙古赤峰市巴林右旗、宁夏固原市隆德县、滁州市定远县、梅州市梅县区
韶关市始兴县、朝阳市凌源市、九江市共青城市、广西南宁市兴宁区、邵阳市武冈市、淮安市金湖县、潍坊市临朐县、怀化市洪江市
南通市如皋市、昭通市盐津县、哈尔滨市呼兰区、开封市杞县、淮安市金湖县
上饶市德兴市、宜昌市当阳市、乐山市沐川县、临沂市平邑县、庆阳市环县、定安县翰林镇、五指山市通什、琼海市塔洋镇、晋城市陵川县、六盘水市六枝特区
随州市随县、齐齐哈尔市克山县、宁夏石嘴山市惠农区、屯昌县南坤镇、永州市双牌县、成都市蒲江县、漳州市芗城区、眉山市仁寿县、衡阳市衡山县
大兴安岭地区加格达奇区、重庆市潼南区、天津市南开区、黄南同仁市、忻州市代县、沈阳市沈北新区
济南市槐荫区、宁夏吴忠市青铜峡市、东莞市万江街道、抚顺市新抚区、佛山市高明区、大庆市林甸县、上海市普陀区、广西崇左市宁明县
嘉兴市桐乡市、雅安市芦山县、黄冈市黄州区、德州市庆云县、徐州市沛县、漳州市平和县、昆明市呈贡区、肇庆市端州区
绵阳市北川羌族自治县、毕节市七星关区、内蒙古乌兰察布市集宁区、滁州市全椒县、菏泽市单县、临汾市浮山县、阜阳市界首市
济南市槐荫区、株洲市炎陵县、雅安市荥经县、渭南市大荔县、广西桂林市恭城瑶族自治县、东莞市洪梅镇、阳泉市盂县、广西北海市合浦县
孝感市孝南区、儋州市峨蔓镇、咸阳市乾县、儋州市大成镇、吕梁市石楼县、厦门市集美区、台州市椒江区、甘孜乡城县、内蒙古包头市东河区
许昌市长葛市、达州市通川区、曲靖市马龙区、咸宁市崇阳县、抚顺市新抚区
乐东黎族自治县佛罗镇、庆阳市合水县、临高县波莲镇、孝感市孝昌县、福州市罗源县
济宁市微山县、内蒙古乌兰察布市化德县、洛阳市孟津区、成都市锦江区、阿坝藏族羌族自治州茂县、昌江黎族自治县石碌镇
玉溪市华宁县、荆门市沙洋县、信阳市平桥区、黄山市徽州区、徐州市邳州市、临夏临夏市、湖州市安吉县、遵义市红花岗区、宁夏固原市泾源县
宝鸡市麟游县、忻州市保德县、楚雄南华县、黄山市徽州区、曲靖市师宗县
咸阳市泾阳县、马鞍山市和县、黄冈市团风县、庆阳市镇原县、临沂市莒南县、毕节市七星关区、南充市蓬安县、景德镇市浮梁县
驻马店市西平县、永州市新田县、商洛市镇安县、怀化市中方县、汉中市留坝县
信阳市息县、海西蒙古族都兰县、杭州市西湖区、广安市武胜县、酒泉市阿克塞哈萨克族自治县、茂名市化州市、武汉市黄陂区
德宏傣族景颇族自治州芒市、南阳市邓州市、雅安市宝兴县、文昌市昌洒镇、宝鸡市凤县、抚州市东乡区、长治市沁源县、阜阳市颍东区、襄阳市枣阳市、西安市阎良区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】