SHARP电视机维修服务中心vip专线
SHARP电视机全国统一客服中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
SHARP电视机24小时报修网站(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
SHARP电视机极速维保24小时客服热线
SHARP电视机售后全国24小时客服热线
维修配件原厂认证,品质保障:我们所有更换的维修配件均经过原厂认证,确保品质可靠,与家电完美匹配,让客户使用更安心。
SHARP电视机服务中心24小时售后电话
SHARP电视机售后服务24小时服务电话是多少全国网点
广西梧州市万秀区、淮安市淮安区、铁岭市西丰县、潍坊市昌邑市、衡阳市南岳区、重庆市巫山县
黔东南剑河县、池州市贵池区、滁州市全椒县、海南共和县、九江市共青城市、大理云龙县、金华市武义县、云浮市郁南县
芜湖市镜湖区、天津市宝坻区、普洱市江城哈尼族彝族自治县、厦门市同安区、牡丹江市绥芬河市、吉安市井冈山市
邵阳市大祥区、马鞍山市和县、洛阳市瀍河回族区、昭通市镇雄县、德宏傣族景颇族自治州芒市、阿坝藏族羌族自治州黑水县、七台河市茄子河区、黔东南麻江县
常德市汉寿县、焦作市中站区、昌江黎族自治县王下乡、江门市开平市、许昌市鄢陵县、荆州市江陵县、湖州市德清县、常州市溧阳市、贵阳市云岩区
荆门市钟祥市、临沂市费县、盘锦市盘山县、天水市甘谷县、大同市天镇县、遵义市绥阳县、玉溪市通海县
湘潭市雨湖区、宜昌市西陵区、四平市双辽市、龙岩市上杭县、本溪市桓仁满族自治县、焦作市解放区、东营市东营区、丽水市松阳县
东莞市清溪镇、广西来宾市象州县、铜陵市枞阳县、宁波市海曙区、漯河市郾城区
北京市通州区、上海市金山区、潍坊市高密市、榆林市横山区、黔南贵定县、遵义市凤冈县、许昌市襄城县、南充市阆中市、三明市永安市、运城市垣曲县
佳木斯市同江市、广西玉林市博白县、忻州市代县、广西南宁市西乡塘区、惠州市博罗县
齐齐哈尔市铁锋区、吉林市昌邑区、达州市通川区、武汉市洪山区、重庆市万州区、儋州市排浦镇、乐山市马边彝族自治县
黄山市黄山区、宁夏银川市贺兰县、东莞市茶山镇、临夏临夏县、荆门市京山市、九江市庐山市、营口市老边区、遵义市正安县、宜宾市高县
湛江市麻章区、东莞市石碣镇、成都市都江堰市、辽阳市文圣区、阿坝藏族羌族自治州茂县、辽阳市弓长岭区、宣城市宁国市、嘉峪关市文殊镇、凉山金阳县
北京市石景山区、成都市彭州市、攀枝花市东区、绍兴市新昌县、泉州市德化县、遵义市桐梓县、岳阳市湘阴县、肇庆市高要区、济南市钢城区、临沧市耿马傣族佤族自治县
温州市洞头区、濮阳市台前县、宣城市郎溪县、昭通市永善县、黄冈市蕲春县
鹰潭市贵溪市、商洛市丹凤县、青岛市黄岛区、黔东南岑巩县、信阳市商城县、宝鸡市陈仓区
南充市高坪区、定安县岭口镇、广西百色市靖西市、长沙市长沙县、恩施州宣恩县、营口市站前区、长治市屯留区、普洱市墨江哈尼族自治县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】