小天鹅冰箱24时售后热线
小天鹅冰箱全厨客服维修热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
小天鹅冰箱全国售后查询热线号码(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
小天鹅冰箱全国维修电话全国统一
小天鹅冰箱客户咨询服务热线
维修服务家电维修知识库,自助查询:建立家电维修知识库,收录常见故障及解决方法,供客户自助查询,快速解决小问题。
小天鹅冰箱400全国售后维修站维修点电话
小天鹅冰箱维修查询站
铜川市耀州区、舟山市定海区、巴中市巴州区、渭南市韩城市、广州市花都区、延边延吉市、汉中市南郑区、宁夏石嘴山市大武口区、宿迁市宿城区、清远市英德市
聊城市高唐县、大连市金州区、雅安市荥经县、延边汪清县、吉安市新干县、许昌市禹州市、海东市乐都区、红河河口瑶族自治县、榆林市榆阳区、洛阳市孟津区
岳阳市云溪区、绍兴市柯桥区、黄冈市英山县、广西贵港市覃塘区、淮安市盱眙县、宜春市高安市、成都市崇州市、哈尔滨市五常市、佳木斯市桦南县
濮阳市濮阳县、连云港市赣榆区、鹤岗市萝北县、南平市延平区、武汉市东西湖区
大理永平县、红河弥勒市、齐齐哈尔市拜泉县、泰州市泰兴市、上海市虹口区、汕尾市海丰县、湛江市雷州市、太原市晋源区、三沙市西沙区
南平市建阳区、天津市西青区、锦州市北镇市、东莞市寮步镇、晋中市祁县、重庆市铜梁区、绵阳市梓潼县
武汉市江岸区、长春市朝阳区、湘西州保靖县、贵阳市白云区、泉州市安溪县、临汾市乡宁县、十堰市丹江口市、白山市靖宇县、江门市台山市
惠州市博罗县、哈尔滨市松北区、本溪市桓仁满族自治县、宁波市北仑区、抚顺市清原满族自治县、重庆市江津区
惠州市惠阳区、北京市通州区、吉安市新干县、重庆市璧山区、河源市连平县、海北门源回族自治县、澄迈县文儒镇
广西河池市东兰县、广西贺州市八步区、榆林市吴堡县、曲靖市宣威市、衡阳市衡阳县
榆林市神木市、衢州市龙游县、连云港市东海县、枣庄市薛城区、内蒙古乌兰察布市集宁区、重庆市江津区、临沂市莒南县、葫芦岛市建昌县
九江市彭泽县、德州市武城县、内蒙古包头市昆都仑区、邵阳市新宁县、六安市叶集区、陇南市康县
潍坊市坊子区、广西贵港市港南区、庆阳市庆城县、宁夏吴忠市盐池县、上饶市广信区
六安市霍山县、榆林市吴堡县、宝鸡市陈仓区、北京市平谷区、阜阳市太和县
玉溪市易门县、白沙黎族自治县阜龙乡、上饶市广信区、九江市庐山市、宜春市奉新县、荆门市沙洋县、哈尔滨市道里区、深圳市龙岗区、宜宾市翠屏区、文山丘北县
延安市延川县、济南市莱芜区、绍兴市新昌县、甘南碌曲县、绥化市肇东市、常州市新北区、济宁市鱼台县、自贡市自流井区
双鸭山市饶河县、广西百色市平果市、眉山市青神县、娄底市冷水江市、六安市裕安区、咸宁市赤壁市、厦门市集美区、宜宾市江安县、绵阳市平武县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】