华凌燃气灶维修网点查询助手
华凌燃气灶厂家总部售后上门维修附近电话是多少:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
华凌燃气灶售后维修服务电话号码是多少查询(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
华凌燃气灶全国人工售后用户服务电话
华凌燃气灶售后总部全国中心电话预约
技术创新引领,提升维修品质:我们不断引进和研发新技术、新工具,提升维修品质和服务效率,为客户提供更加优质的维修体验。
华凌燃气灶总部400电话售后查询
华凌燃气灶客服热线电话
武汉市江汉区、淄博市临淄区、巴中市平昌县、南阳市西峡县、清远市连山壮族瑶族自治县、烟台市莱阳市、榆林市定边县、咸阳市长武县、郑州市登封市、北京市门头沟区
杭州市下城区、北京市丰台区、河源市紫金县、广西来宾市忻城县、榆林市吴堡县、资阳市安岳县、丹东市凤城市
晋中市介休市、阳泉市平定县、江门市新会区、文山丘北县、重庆市彭水苗族土家族自治县、广西贺州市富川瑶族自治县、台州市玉环市、果洛达日县、衢州市江山市
九江市濂溪区、抚州市乐安县、潍坊市临朐县、台州市温岭市、普洱市景东彝族自治县、甘孜石渠县
绵阳市江油市、许昌市魏都区、资阳市乐至县、常州市溧阳市、牡丹江市阳明区、安庆市望江县、吉林市船营区、重庆市合川区、鹤岗市兴安区
广西崇左市天等县、东莞市南城街道、牡丹江市西安区、兰州市城关区、定西市渭源县
娄底市冷水江市、焦作市解放区、内蒙古呼伦贝尔市牙克石市、重庆市潼南区、绥化市肇东市、郑州市中牟县
泸州市江阳区、焦作市解放区、广西崇左市龙州县、广西河池市南丹县、莆田市涵江区、凉山喜德县、马鞍山市当涂县、邵阳市新宁县、抚州市崇仁县
广西百色市德保县、甘孜甘孜县、十堰市房县、直辖县潜江市、洛阳市老城区
鞍山市铁东区、聊城市茌平区、九江市彭泽县、内蒙古乌兰察布市化德县、凉山昭觉县、鸡西市城子河区、丹东市凤城市、湘西州吉首市
直辖县神农架林区、伊春市伊美区、庆阳市环县、广西来宾市金秀瑶族自治县、武汉市武昌区
海北刚察县、徐州市云龙区、三明市永安市、内蒙古巴彦淖尔市临河区、哈尔滨市香坊区、普洱市澜沧拉祜族自治县、韶关市翁源县、海西蒙古族乌兰县、吉安市永新县
雅安市天全县、曲靖市麒麟区、鹤岗市南山区、荆州市松滋市、西安市蓝田县
焦作市山阳区、广西河池市罗城仫佬族自治县、南阳市卧龙区、宁夏吴忠市盐池县、延边和龙市、商丘市睢阳区、定安县黄竹镇、黑河市嫩江市、德州市齐河县、杭州市淳安县
丹东市宽甸满族自治县、忻州市岢岚县、安庆市怀宁县、大同市平城区、果洛玛沁县、葫芦岛市兴城市、内蒙古锡林郭勒盟正蓝旗、枣庄市台儿庄区、三明市明溪县
乐山市峨眉山市、内蒙古鄂尔多斯市东胜区、文昌市东路镇、潍坊市潍城区、娄底市双峰县
德阳市什邡市、德州市临邑县、株洲市芦淞区、泉州市石狮市、安庆市大观区、西安市莲湖区、安阳市龙安区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】