400服务电话:400-1865-909(点击咨询)
斯麦格冰箱客服全天候支持
斯麦格冰箱售后维修服务电话
斯麦格冰箱速响应服务:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
斯麦格冰箱人工客服联系电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
斯麦格冰箱客服热线服务点
斯麦格冰箱24小时厂家24小时维修电话
快速上门维修:预约后24小时内上门,解决您的燃眉之急。
维修服务定制化培训课程,提升用户技能:为客户或家庭成员提供定制化家电使用与保养培训课程,提升用户的操作技能和日常维护能力。
斯麦格冰箱全国客户服务中心
斯麦格冰箱维修服务电话全国服务区域:
内蒙古赤峰市松山区、吕梁市文水县、泰州市高港区、屯昌县枫木镇、通化市柳河县、临汾市蒲县、昆明市禄劝彝族苗族自治县、长春市朝阳区、安庆市桐城市、曲靖市会泽县
内蒙古呼和浩特市武川县、乐东黎族自治县佛罗镇、吉安市遂川县、金昌市金川区、合肥市巢湖市、大理巍山彝族回族自治县
忻州市代县、东莞市石龙镇、长治市沁县、上海市松江区、庆阳市宁县、邵阳市武冈市、定西市渭源县、嘉峪关市新城镇、滁州市全椒县
宝鸡市凤翔区、吉林市桦甸市、深圳市南山区、重庆市巴南区、温州市鹿城区、铜陵市枞阳县、驻马店市驿城区、平顶山市郏县、鹤壁市淇县、东莞市万江街道
台州市玉环市、宁德市柘荣县、广州市天河区、鸡西市鸡东县、自贡市荣县、清远市阳山县
株洲市炎陵县、内蒙古锡林郭勒盟正蓝旗、通化市东昌区、蚌埠市龙子湖区、安康市汉阴县
镇江市丹徒区、三明市沙县区、肇庆市四会市、苏州市昆山市、邵阳市北塔区
鹤岗市萝北县、黄冈市黄梅县、广元市利州区、张家界市武陵源区、平顶山市宝丰县
盐城市响水县、广西梧州市长洲区、丽江市古城区、北京市密云区、通化市通化县
遂宁市蓬溪县、文昌市翁田镇、南平市建瓯市、广西梧州市长洲区、陵水黎族自治县光坡镇
武威市凉州区、淮安市淮阴区、天津市西青区、贵阳市白云区、毕节市金沙县、果洛玛多县
岳阳市华容县、临夏广河县、甘南舟曲县、广西南宁市兴宁区、永州市双牌县、济宁市金乡县、湘潭市雨湖区、宁波市奉化区、昆明市官渡区、吕梁市文水县
广州市天河区、十堰市张湾区、庆阳市西峰区、德阳市绵竹市、重庆市秀山县、洛阳市汝阳县、普洱市景谷傣族彝族自治县
湛江市廉江市、贵阳市清镇市、文昌市铺前镇、岳阳市岳阳县、西安市高陵区、宁夏固原市西吉县、自贡市沿滩区、汉中市勉县
荆州市公安县、白沙黎族自治县阜龙乡、本溪市明山区、伊春市汤旺县、贵阳市白云区、阳江市阳西县、绥化市海伦市、荆州市松滋市、河源市紫金县
张掖市甘州区、永州市东安县、朔州市朔城区、温州市文成县、甘孜炉霍县、盐城市大丰区、七台河市勃利县、大兴安岭地区呼玛县、泸州市泸县、湛江市徐闻县
阿坝藏族羌族自治州小金县、儋州市白马井镇、淮北市烈山区、长沙市芙蓉区、内蒙古乌兰察布市集宁区、怀化市麻阳苗族自治县、宁波市奉化区
直辖县仙桃市、宁波市鄞州区、七台河市桃山区、郴州市临武县、黄山市黄山区、恩施州巴东县、葫芦岛市建昌县、庆阳市合水县、玉溪市易门县、潍坊市奎文区
新乡市卫辉市、儋州市光村镇、抚州市南丰县、内蒙古赤峰市喀喇沁旗、中山市南区街道、咸阳市泾阳县、襄阳市枣阳市、阳泉市盂县、肇庆市德庆县、黄石市黄石港区
西宁市城东区、鹤岗市萝北县、凉山木里藏族自治县、泉州市南安市、庆阳市庆城县、中山市阜沙镇、济宁市梁山县、宝鸡市陇县
中山市西区街道、双鸭山市集贤县、张掖市甘州区、大理宾川县、成都市新都区、烟台市海阳市、上饶市横峰县、太原市万柏林区、德州市夏津县、茂名市高州市
泉州市金门县、聊城市茌平区、抚州市崇仁县、广西柳州市柳江区、衡阳市常宁市、宁夏中卫市沙坡头区、南通市崇川区、三明市大田县、吉安市庐陵新区、淮安市盱眙县
安康市、曲靖市、来宾市、酒泉市、固原市、莆田市、昌都市、晋城市、淮安市、荆门市、蚌埠市、张家界市、日照市、哈密市、甘孜藏族自治州、张家口市、日喀则市、湘潭市、巴中市、益阳市
徐州市鼓楼区、东莞市沙田镇、池州市贵池区、抚顺市顺城区、吉林市永吉县、海南兴海县、双鸭山市宝山区
陇南市礼县、温州市乐清市、朔州市山阴县、重庆市垫江县、河源市龙川县、广西南宁市兴宁区
荆州市洪湖市、周口市郸城县、周口市商水县、江门市江海区、平顶山市宝丰县、黔南三都水族自治县
丽水市景宁畲族自治县、绥化市北林区、黔南长顺县、淄博市张店区、绥化市肇东市、衡阳市蒸湘区、广西桂林市永福县
400服务电话:400-1865-909(点击咨询)
斯麦格冰箱维修售后中心热线
斯麦格冰箱快速售后保障
斯麦格冰箱售后服务维修上门维修电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
斯麦格冰箱客服维修咨询(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
斯麦格冰箱专业客服中心
斯麦格冰箱人工24小时服务热线
维修完成后,提供详细维修报告,让您对维修结果心知肚明。
定期回访服务:维修完成后,定期回访,确保问题无复发。
斯麦格冰箱维修售后网点24小时电话
斯麦格冰箱维修服务电话全国服务区域:
齐齐哈尔市碾子山区、长沙市望城区、兰州市永登县、内蒙古乌兰察布市凉城县、海西蒙古族德令哈市、安庆市迎江区、临高县博厚镇、三明市宁化县
芜湖市弋江区、琼海市万泉镇、通化市集安市、昌江黎族自治县七叉镇、三沙市西沙区、伊春市友好区、蚌埠市禹会区、厦门市海沧区、雅安市石棉县
长治市壶关县、迪庆维西傈僳族自治县、安康市旬阳市、德州市武城县、文山西畴县、通化市柳河县、怒江傈僳族自治州福贡县、湖州市南浔区
襄阳市宜城市、重庆市沙坪坝区、天水市张家川回族自治县、内蒙古呼和浩特市托克托县、黔南平塘县、深圳市福田区、曲靖市宣威市
广西钦州市钦北区、温州市鹿城区、沈阳市大东区、陵水黎族自治县椰林镇、鄂州市梁子湖区
兰州市永登县、宜昌市猇亭区、宜宾市叙州区、延安市延长县、宝鸡市麟游县、广安市岳池县、宁德市福安市
潮州市潮安区、天水市秦州区、吕梁市方山县、景德镇市珠山区、贵阳市观山湖区、南阳市社旗县、铜川市宜君县、昌江黎族自治县十月田镇
南平市延平区、绍兴市越城区、商丘市睢阳区、广西玉林市福绵区、泉州市惠安县、株洲市荷塘区、万宁市山根镇
红河开远市、绥化市兰西县、大兴安岭地区新林区、龙岩市永定区、晋中市昔阳县、连云港市灌云县、淮安市金湖县
海东市乐都区、安康市白河县、衢州市常山县、广西百色市田林县、广西北海市合浦县、江门市新会区、重庆市巫溪县、丽水市青田县、长春市双阳区
锦州市义县、泰州市靖江市、周口市鹿邑县、常德市汉寿县、临沧市凤庆县、广西梧州市万秀区、吕梁市汾阳市、济宁市鱼台县
漳州市龙海区、黑河市嫩江市、牡丹江市绥芬河市、湛江市霞山区、普洱市思茅区、辽阳市辽阳县、甘孜泸定县、陵水黎族自治县光坡镇、黔东南台江县、金华市兰溪市
抚顺市清原满族自治县、广西来宾市武宣县、广西南宁市兴宁区、徐州市贾汪区、西安市灞桥区、盐城市阜宁县、琼海市长坡镇
铜仁市松桃苗族自治县、六安市叶集区、琼海市嘉积镇、内蒙古赤峰市林西县、广西来宾市象州县、岳阳市岳阳县、七台河市勃利县、湘潭市岳塘区、哈尔滨市呼兰区、成都市大邑县
云浮市罗定市、济宁市鱼台县、嘉兴市海盐县、遂宁市蓬溪县、齐齐哈尔市龙沙区、盘锦市双台子区、鞍山市铁西区、内蒙古乌兰察布市商都县
临汾市吉县、黔南龙里县、焦作市温县、南平市顺昌县、文昌市翁田镇、南阳市镇平县、舟山市嵊泗县、杭州市拱墅区、信阳市商城县、丽水市云和县
潮州市潮安区、青岛市平度市、太原市清徐县、三明市三元区、河源市源城区、聊城市茌平区、北京市延庆区、商洛市镇安县、马鞍山市当涂县
合肥市庐江县、陵水黎族自治县新村镇、济宁市梁山县、韶关市南雄市、临汾市洪洞县、哈尔滨市延寿县、佳木斯市同江市
黄山市黄山区、雅安市荥经县、成都市武侯区、宁夏固原市原州区、泉州市安溪县、甘南碌曲县、广西河池市环江毛南族自治县、滁州市南谯区
甘南临潭县、黄石市大冶市、晋中市祁县、苏州市太仓市、巴中市恩阳区、攀枝花市西区、遵义市凤冈县、上海市金山区
咸宁市咸安区、广西玉林市福绵区、上海市奉贤区、常德市安乡县、深圳市南山区、贵阳市白云区、广西百色市靖西市、南阳市社旗县
临沂市兰山区、济南市钢城区、汉中市宁强县、嘉峪关市文殊镇、铜川市宜君县
陵水黎族自治县黎安镇、延安市黄陵县、郴州市宜章县、海西蒙古族天峻县、德州市乐陵市、定西市陇西县、运城市临猗县、嘉兴市海宁市
揭阳市普宁市、雅安市名山区、吉安市安福县、苏州市常熟市、六安市舒城县、温州市鹿城区、宁夏石嘴山市大武口区、儋州市和庆镇、西宁市城北区、安阳市殷都区
松原市长岭县、六盘水市钟山区、太原市娄烦县、乐山市犍为县、丽水市庆元县
温州市文成县、内蒙古巴彦淖尔市临河区、淮北市相山区、赣州市瑞金市、临沂市临沭县、遂宁市射洪市
乐山市五通桥区、毕节市纳雍县、许昌市建安区、焦作市修武县、台州市黄岩区、荆州市松滋市、鄂州市华容区、湛江市遂溪县、东莞市谢岗镇
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】