宝兰燃气灶24小时售后电话维修附近电话
宝兰燃气灶总部售后服务维修电话热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
宝兰燃气灶各市24小时网点400客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
宝兰燃气灶售后服务客服电话人工服务400
宝兰燃气灶全国24小时400故障报修客服中心
维修服务家电数据备份服务,保护隐私:对于含有智能功能的家电,提供数据备份服务,确保在维修过程中客户数据的安全性和隐私保护。
宝兰燃气灶区域服务中心
宝兰燃气灶统一网点报修电话
濮阳市范县、张家界市慈利县、太原市杏花岭区、济南市历城区、泉州市永春县、乐山市犍为县、黔南荔波县、吉安市遂川县、鸡西市恒山区、南昌市青山湖区
陵水黎族自治县隆广镇、广西百色市田东县、重庆市涪陵区、重庆市江北区、湖州市安吉县、南阳市社旗县、九江市湖口县、酒泉市阿克塞哈萨克族自治县
黄冈市黄州区、海南同德县、郴州市苏仙区、雅安市荥经县、乐山市五通桥区、广西贵港市平南县、金华市磐安县
忻州市宁武县、文昌市翁田镇、咸宁市崇阳县、齐齐哈尔市昂昂溪区、兰州市榆中县、大理剑川县、淮南市凤台县、广州市南沙区
东营市广饶县、锦州市黑山县、成都市崇州市、佳木斯市前进区、海西蒙古族乌兰县、宁夏固原市隆德县、厦门市集美区、陇南市两当县、衢州市龙游县
成都市锦江区、安阳市滑县、渭南市潼关县、七台河市勃利县、黔西南兴义市、安阳市内黄县、楚雄元谋县、广安市华蓥市
晋中市昔阳县、宁夏吴忠市盐池县、乐山市峨边彝族自治县、重庆市长寿区、阳泉市平定县、哈尔滨市道外区、鹤壁市淇滨区、酒泉市金塔县
邵阳市双清区、潍坊市安丘市、烟台市蓬莱区、荆门市钟祥市、沈阳市辽中区、驻马店市遂平县
吕梁市孝义市、德州市庆云县、新乡市延津县、乐山市犍为县、武汉市青山区、沈阳市和平区、忻州市偏关县、松原市扶余市
广西河池市东兰县、佛山市禅城区、双鸭山市岭东区、潍坊市奎文区、丽江市玉龙纳西族自治县
昌江黎族自治县王下乡、临沂市罗庄区、嘉峪关市文殊镇、辽阳市辽阳县、黑河市逊克县
乐东黎族自治县利国镇、娄底市娄星区、盘锦市大洼区、西安市鄠邑区、广元市旺苍县、昭通市水富市、郴州市汝城县、红河河口瑶族自治县
榆林市定边县、宁德市福鼎市、广西柳州市三江侗族自治县、贵阳市开阳县、徐州市云龙区、合肥市庐江县
大连市西岗区、菏泽市郓城县、汕尾市陆丰市、自贡市自流井区、武汉市东西湖区、常州市新北区、黔南都匀市、重庆市垫江县、商丘市睢县、广州市从化区
吕梁市离石区、红河弥勒市、广州市越秀区、红河河口瑶族自治县、牡丹江市林口县、湛江市坡头区
六安市舒城县、重庆市垫江县、南阳市桐柏县、白城市镇赉县、德州市齐河县、杭州市上城区、临沧市永德县、韶关市新丰县、达州市达川区
日照市五莲县、吉林市龙潭区、信阳市平桥区、衢州市江山市、毕节市织金县、泉州市石狮市
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】