御安信保险柜24小时人工电话今日客服热线
御安信保险柜全国统一服务热线/售后电话24小时人工电话-咨询专线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
御安信保险柜客服热线指引(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
御安信保险柜服务查询助手
御安信保险柜上门维修网点
快速上门服务,缩短等待时间:我们承诺在客户预约后的最短时间内上门服务,减少客户等待时间,尽快恢复家电正常使用。
御安信保险柜24小时售后服务热线电话今日客服热线
御安信保险柜售后维修热线预约电话
绥化市海伦市、内蒙古鄂尔多斯市东胜区、黔东南岑巩县、扬州市宝应县、西安市蓝田县、衡阳市耒阳市、广元市剑阁县
湘西州吉首市、宁德市柘荣县、北京市丰台区、天津市静海区、梅州市平远县、成都市双流区
周口市项城市、伊春市丰林县、抚州市崇仁县、九江市濂溪区、安庆市大观区、海口市秀英区、果洛久治县、上海市长宁区、许昌市鄢陵县
随州市曾都区、韶关市翁源县、内蒙古乌兰察布市卓资县、南昌市西湖区、定安县黄竹镇、普洱市思茅区、运城市永济市、广西南宁市西乡塘区、宜宾市叙州区、海口市龙华区
海西蒙古族天峻县、北京市房山区、衢州市开化县、临汾市洪洞县、伊春市大箐山县、大庆市大同区、福州市罗源县、曲靖市陆良县
张掖市临泽县、衢州市常山县、内蒙古赤峰市巴林左旗、海口市美兰区、榆林市横山区、长沙市雨花区、重庆市渝北区、运城市垣曲县、临高县东英镇
晋中市灵石县、南通市通州区、宜昌市点军区、四平市梨树县、潍坊市奎文区、北京市门头沟区、哈尔滨市通河县、白沙黎族自治县南开乡、恩施州鹤峰县
五指山市毛道、广西南宁市马山县、楚雄武定县、淮北市烈山区、东莞市石碣镇、黄山市歙县、常德市桃源县、琼海市阳江镇、忻州市静乐县、南京市建邺区
恩施州利川市、东方市大田镇、广西桂林市平乐县、周口市西华县、六安市金安区
白沙黎族自治县南开乡、宿迁市泗阳县、雅安市雨城区、鞍山市海城市、黔西南贞丰县、赣州市兴国县、孝感市孝昌县、荆州市沙市区、安阳市内黄县、广西玉林市博白县
长治市潞州区、武汉市青山区、广西桂林市灌阳县、福州市罗源县、黔南惠水县、镇江市丹阳市
鹤壁市淇滨区、德州市庆云县、宁夏石嘴山市惠农区、广西河池市南丹县、盐城市阜宁县、芜湖市镜湖区、湖州市安吉县、新乡市凤泉区
南京市江宁区、内蒙古锡林郭勒盟苏尼特右旗、中山市石岐街道、聊城市东昌府区、上海市黄浦区、白银市平川区、商丘市柘城县、儋州市海头镇、忻州市静乐县
宜昌市宜都市、商丘市夏邑县、淮南市八公山区、咸阳市泾阳县、黄冈市浠水县、广西百色市凌云县、内江市资中县、澄迈县瑞溪镇、佳木斯市桦川县、宁夏固原市泾源县
宣城市宁国市、九江市濂溪区、江门市新会区、深圳市光明区、湛江市赤坎区、太原市万柏林区、邵阳市洞口县
重庆市城口县、濮阳市南乐县、海东市乐都区、铜仁市松桃苗族自治县、济宁市汶上县
嘉峪关市新城镇、怀化市会同县、上饶市信州区、张掖市临泽县、运城市临猗县、玉树曲麻莱县、德阳市旌阳区、信阳市罗山县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】