400服务电话:400-1865-909(点击咨询)
江森自控空调400全国售后电话人工服务24小时热线
江森自控空调客服电话人工服务24小时全国网点
江森自控空调客户咨询服务热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
江森自控空调全国统一热线400受理客服中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
江森自控空调400客服售后维修售后电话
江森自控空调服务专线中心电话
维修服务定制保养计划,延长家电寿命:根据家电类型、使用频率及环境,为客户定制个性化保养计划,有效延长家电使用寿命。
精准定位,快速到达:利用先进的定位技术,我们能在最短时间内安排技师准确到达您的位置,减少等待时间,提升服务效率。
江森自控空调全国24小时各售后服务点电话号码
江森自控空调维修服务电话全国服务区域:
遵义市仁怀市、南京市江宁区、保山市昌宁县、白山市临江市、延边龙井市、广元市旺苍县、安阳市文峰区
渭南市白水县、厦门市集美区、南充市高坪区、齐齐哈尔市甘南县、天水市清水县
广西崇左市扶绥县、淮北市濉溪县、惠州市惠东县、福州市平潭县、东方市大田镇、西安市周至县、定安县龙河镇、咸阳市彬州市、楚雄南华县、温州市泰顺县
西宁市城中区、黔南荔波县、南平市邵武市、内蒙古包头市青山区、普洱市西盟佤族自治县、绍兴市诸暨市
烟台市莱州市、常德市鼎城区、临沂市费县、重庆市巴南区、黔西南安龙县
青岛市平度市、绵阳市涪城区、广西防城港市上思县、东莞市东城街道、安康市镇坪县
马鞍山市雨山区、广西梧州市苍梧县、徐州市云龙区、宁夏银川市金凤区、广西南宁市马山县
咸阳市乾县、周口市太康县、宝鸡市麟游县、晋中市左权县、营口市西市区、成都市青白江区、德州市乐陵市、绍兴市新昌县、恩施州来凤县
鹤岗市萝北县、安庆市太湖县、西安市高陵区、屯昌县西昌镇、内蒙古巴彦淖尔市乌拉特前旗、广西河池市凤山县、嘉兴市海宁市、兰州市皋兰县、淄博市高青县
沈阳市大东区、陵水黎族自治县隆广镇、重庆市永川区、楚雄双柏县、晋中市介休市
揭阳市榕城区、内蒙古乌海市海勃湾区、琼海市石壁镇、内蒙古鄂尔多斯市康巴什区、永州市宁远县、滁州市凤阳县、清远市阳山县、滁州市来安县、赣州市崇义县、九江市共青城市
恩施州咸丰县、重庆市南岸区、通化市辉南县、南通市海门区、开封市尉氏县、西安市阎良区、临沂市莒南县
济南市长清区、周口市鹿邑县、平凉市灵台县、怒江傈僳族自治州泸水市、深圳市龙岗区、长沙市浏阳市
曲靖市富源县、株洲市渌口区、晋中市灵石县、重庆市荣昌区、海东市循化撒拉族自治县、松原市扶余市、大同市云州区、大庆市肇源县、西安市新城区
南昌市湾里区、鹤岗市工农区、内蒙古鄂尔多斯市东胜区、常州市武进区、福州市马尾区、临沧市凤庆县、永州市江华瑶族自治县、广西梧州市蒙山县、大理巍山彝族回族自治县
鸡西市密山市、宜昌市宜都市、泰州市高港区、内蒙古赤峰市克什克腾旗、德州市平原县
襄阳市宜城市、张掖市甘州区、杭州市余杭区、内蒙古通辽市科尔沁左翼中旗、南通市如皋市、白沙黎族自治县南开乡、鹰潭市月湖区、南阳市淅川县、抚顺市东洲区
广西桂林市秀峰区、天津市东丽区、长治市上党区、武汉市硚口区、宿迁市泗洪县、邵阳市武冈市、驻马店市驿城区、延边敦化市
南昌市南昌县、大连市长海县、衡阳市耒阳市、金昌市永昌县、上饶市弋阳县
成都市大邑县、双鸭山市友谊县、文昌市翁田镇、儋州市东成镇、临高县新盈镇、嘉兴市海宁市、岳阳市岳阳县、衢州市衢江区、昆明市石林彝族自治县
南平市顺昌县、驻马店市确山县、遵义市赤水市、无锡市滨湖区、长沙市望城区、济宁市邹城市、十堰市竹溪县、怀化市辰溪县、衡阳市珠晖区、咸阳市武功县
大庆市大同区、焦作市温县、宁夏银川市贺兰县、菏泽市东明县、三亚市海棠区
北京市石景山区、金华市婺城区、赣州市于都县、儋州市大成镇、临沂市郯城县、南昌市湾里区、广西崇左市龙州县、淮南市田家庵区
九江市浔阳区、广州市海珠区、衢州市开化县、徐州市丰县、威海市荣成市、抚州市宜黄县、内蒙古呼伦贝尔市扎兰屯市、芜湖市弋江区、甘孜炉霍县、五指山市番阳
抚顺市顺城区、晋中市祁县、晋城市高平市、江门市恩平市、白山市抚松县、连云港市东海县、漳州市华安县、洛阳市新安县
武威市天祝藏族自治县、佳木斯市同江市、乐山市峨边彝族自治县、临高县加来镇、内蒙古赤峰市巴林左旗、广西柳州市城中区、常德市澧县、信阳市固始县
日照市五莲县、吉林市龙潭区、信阳市平桥区、衢州市江山市、毕节市织金县、泉州市石狮市
400服务电话:400-1865-909(点击咨询)
江森自控空调售后在线服务
江森自控空调全国统一官方服务热线电话
江森自控空调速修热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
江森自控空调官方特约热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
江森自控空调全国各区24H客服中心
江森自控空调维修师傅快修网点
智能预约系统,提升服务便捷性:我们采用智能预约系统,客户可通过手机APP或网站轻松预约维修时间,享受更加便捷的服务体验。
我们承诺,所有维修服务均提供透明的价格体系,让您明明白白消费。
江森自控空调售后服务中心24小时客服热线
江森自控空调维修服务电话全国服务区域:
衢州市常山县、西安市莲湖区、莆田市仙游县、儋州市和庆镇、东莞市道滘镇、黔西南普安县、红河红河县、广西钦州市灵山县、内蒙古乌兰察布市四子王旗、梅州市五华县
吉安市吉安县、南充市阆中市、张家界市慈利县、怀化市溆浦县、咸阳市杨陵区、宁夏中卫市中宁县、楚雄双柏县、三门峡市陕州区
湘潭市岳塘区、四平市梨树县、甘南临潭县、绵阳市梓潼县、白沙黎族自治县金波乡、长春市德惠市、赣州市龙南市、朝阳市建平县、西宁市湟源县、齐齐哈尔市昂昂溪区
丹东市宽甸满族自治县、忻州市岢岚县、安庆市怀宁县、大同市平城区、果洛玛沁县、葫芦岛市兴城市、内蒙古锡林郭勒盟正蓝旗、枣庄市台儿庄区、三明市明溪县
洛阳市涧西区、铜仁市玉屏侗族自治县、中山市三乡镇、晋城市城区、莆田市秀屿区、五指山市毛阳、广西来宾市忻城县、内蒙古呼和浩特市清水河县、杭州市拱墅区
曲靖市罗平县、定安县黄竹镇、黑河市北安市、黔东南镇远县、雅安市天全县、西安市临潼区
忻州市河曲县、福州市福清市、武威市民勤县、德州市临邑县、红河金平苗族瑶族傣族自治县
遵义市红花岗区、郑州市新密市、东莞市凤岗镇、上饶市婺源县、黄石市铁山区、黔南长顺县、贵阳市清镇市、内蒙古赤峰市红山区、广西崇左市凭祥市、徐州市泉山区
广西百色市田林县、天津市西青区、福州市仓山区、中山市板芙镇、酒泉市阿克塞哈萨克族自治县、大兴安岭地区松岭区、临汾市乡宁县、贵阳市观山湖区
福州市罗源县、绥化市北林区、武汉市江夏区、广西崇左市大新县、咸阳市旬邑县、广西柳州市鹿寨县
新乡市长垣市、西宁市城东区、大连市甘井子区、黑河市北安市、亳州市谯城区、黄冈市麻城市、白沙黎族自治县七坊镇
岳阳市云溪区、日照市东港区、扬州市广陵区、黔西南安龙县、蚌埠市蚌山区、迪庆香格里拉市、丽江市古城区、雅安市名山区、铜陵市枞阳县
铜川市王益区、渭南市白水县、临汾市永和县、内蒙古赤峰市宁城县、海东市互助土族自治县、黄山市休宁县、宁夏银川市贺兰县、内蒙古包头市土默特右旗、吉林市永吉县、遵义市凤冈县
广州市从化区、德州市齐河县、宁夏吴忠市青铜峡市、宁波市江北区、威海市文登区、德州市夏津县、四平市铁西区、南通市海安市
长春市德惠市、南昌市东湖区、咸宁市通山县、莆田市秀屿区、宁波市海曙区、内蒙古兴安盟乌兰浩特市、杭州市上城区、文山文山市、曲靖市会泽县
南阳市唐河县、大理大理市、内蒙古赤峰市林西县、汉中市汉台区、红河红河县、广西贺州市昭平县
淮安市涟水县、西安市阎良区、宜春市宜丰县、昌江黎族自治县石碌镇、海东市乐都区、酒泉市肃州区、东方市东河镇、红河石屏县、鞍山市海城市
哈尔滨市阿城区、广西南宁市武鸣区、扬州市仪征市、中山市南区街道、温州市瓯海区、天水市麦积区、内蒙古锡林郭勒盟太仆寺旗、揭阳市惠来县
内蒙古锡林郭勒盟阿巴嘎旗、重庆市江北区、内蒙古锡林郭勒盟锡林浩特市、连云港市海州区、天津市武清区、绵阳市三台县、丹东市凤城市
汉中市宁强县、西双版纳勐腊县、九江市浔阳区、阜新市清河门区、东方市天安乡、滁州市南谯区、深圳市罗湖区、佳木斯市同江市
广西南宁市马山县、乐东黎族自治县尖峰镇、乐山市马边彝族自治县、三明市沙县区、西宁市湟源县、文山文山市、东莞市常平镇
重庆市铜梁区、广元市昭化区、铜仁市碧江区、邵阳市隆回县、江门市开平市、达州市万源市、丹东市东港市、琼海市会山镇、杭州市上城区、泸州市合江县
营口市鲅鱼圈区、楚雄大姚县、晋中市榆社县、乐东黎族自治县黄流镇、晋中市介休市
湘西州保靖县、滨州市博兴县、长春市九台区、咸阳市旬邑县、重庆市南岸区、营口市盖州市、玉树杂多县
徐州市鼓楼区、温州市泰顺县、松原市乾安县、淄博市淄川区、聊城市东昌府区
杭州市西湖区、甘孜德格县、驻马店市确山县、毕节市大方县、临汾市侯马市、内蒙古锡林郭勒盟阿巴嘎旗、泸州市古蔺县、邵阳市双清区、安康市平利县
阿坝藏族羌族自治州小金县、抚州市临川区、临沂市兰山区、盐城市东台市、南京市秦淮区、清远市佛冈县、南平市邵武市
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】