天普太阳能全国统一售后客服电话
天普太阳能全国人工售后电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
天普太阳能24小时快速维修服务专线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
天普太阳能客服服务
天普太阳能官方全国各统一售后24小时受理客服中心
维修服务老客户专属优惠,增强忠诚度:为感谢老客户支持,我们提供专属优惠和增值服务,增强客户忠诚度。
天普太阳能厂家总部售后维修上门维修附近电话
天普太阳能厂家总部售后维修中心电话地址
泸州市纳溪区、黔南平塘县、湘西州永顺县、广安市岳池县、黔东南剑河县、广西来宾市象州县、温州市洞头区、陵水黎族自治县群英乡
雅安市汉源县、广西桂林市七星区、辽源市龙山区、普洱市西盟佤族自治县、德州市宁津县、阿坝藏族羌族自治州理县、甘孜泸定县、上海市金山区、乐东黎族自治县千家镇、上饶市信州区
忻州市岢岚县、鸡西市滴道区、晋城市城区、陵水黎族自治县黎安镇、德宏傣族景颇族自治州梁河县、广西河池市东兰县、东莞市望牛墩镇、嘉兴市海宁市、嘉兴市南湖区
鸡西市滴道区、广西南宁市良庆区、通化市集安市、泰州市高港区、本溪市南芬区、广西百色市德保县、金华市永康市、合肥市庐江县、海西蒙古族乌兰县
广西南宁市横州市、恩施州利川市、驻马店市正阳县、马鞍山市当涂县、怒江傈僳族自治州泸水市、攀枝花市盐边县、烟台市栖霞市、凉山西昌市
武汉市江岸区、枣庄市山亭区、中山市南头镇、黄石市西塞山区、大理洱源县
洛阳市偃师区、铜仁市碧江区、黄石市黄石港区、永州市道县、广西玉林市陆川县、绥化市明水县、乐东黎族自治县大安镇、齐齐哈尔市依安县
南平市邵武市、普洱市江城哈尼族彝族自治县、常州市新北区、三沙市西沙区、镇江市扬中市、黑河市五大连池市
中山市神湾镇、眉山市洪雅县、屯昌县西昌镇、兰州市榆中县、甘南临潭县、赣州市信丰县、广州市海珠区、吉林市龙潭区
黄南河南蒙古族自治县、十堰市张湾区、昭通市水富市、焦作市中站区、鹤壁市浚县、万宁市万城镇、江门市恩平市、白沙黎族自治县南开乡
深圳市罗湖区、吉安市峡江县、龙岩市武平县、泉州市南安市、黔西南贞丰县
中山市石岐街道、长沙市望城区、九江市共青城市、邵阳市绥宁县、贵阳市云岩区、广西柳州市三江侗族自治县、厦门市集美区
平顶山市鲁山县、达州市通川区、佳木斯市汤原县、临高县和舍镇、南京市栖霞区
阜新市海州区、郑州市新郑市、普洱市江城哈尼族彝族自治县、七台河市新兴区、红河红河县、驻马店市确山县、邵阳市城步苗族自治县、北京市大兴区、龙岩市连城县、赣州市南康区
大兴安岭地区松岭区、黔东南三穗县、天津市南开区、中山市五桂山街道、武汉市硚口区
常德市武陵区、丽水市遂昌县、临夏东乡族自治县、咸阳市永寿县、南通市通州区、长春市南关区
常德市汉寿县、郴州市宜章县、昆明市东川区、株洲市石峰区、肇庆市德庆县、赣州市全南县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】