全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

ZKAT智能锁客服热线电话咨询

发布时间:
ZKAT智能锁售后服务热线中心24小时售后400客服







ZKAT智能锁客服热线电话咨询:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









ZKAT智能锁售后报修站点各区24小时维修点(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





ZKAT智能锁全国人工售后统一服务热线

ZKAT智能锁售后全国网点









维修日志查询:提供维修日志查询功能,随时查看维修历史记录。




ZKAT智能锁市区统报修号码









ZKAT智能锁售后客服24小时电话

 驻马店市平舆县、黔南三都水族自治县、临沂市兰山区、红河石屏县、伊春市丰林县





菏泽市单县、广西南宁市西乡塘区、淮安市淮安区、西安市鄠邑区、南阳市社旗县、延边敦化市、广西百色市西林县、双鸭山市友谊县









佛山市南海区、海口市龙华区、内蒙古乌兰察布市商都县、东莞市大岭山镇、菏泽市定陶区、东莞市凤岗镇、荆门市掇刀区









海南贵德县、宿迁市泗洪县、北京市房山区、韶关市曲江区、怀化市新晃侗族自治县、扬州市仪征市









延安市黄陵县、延安市安塞区、内蒙古阿拉善盟阿拉善左旗、韶关市仁化县、上饶市信州区、内蒙古阿拉善盟阿拉善右旗









六安市霍山县、白城市大安市、抚州市南丰县、泰安市岱岳区、蚌埠市固镇县、益阳市资阳区、平凉市崆峒区









龙岩市长汀县、渭南市韩城市、安庆市太湖县、娄底市新化县、东莞市黄江镇、临沧市耿马傣族佤族自治县、东莞市横沥镇、永州市新田县









通化市通化县、淮安市淮安区、泉州市晋江市、黄冈市红安县、晋中市太谷区、内蒙古赤峰市翁牛特旗、怀化市中方县、咸阳市淳化县









鹤岗市兴安区、连云港市赣榆区、上海市闵行区、直辖县天门市、内蒙古赤峰市阿鲁科尔沁旗、金华市金东区、聊城市茌平区、大同市天镇县、常德市澧县









南通市如东县、南昌市安义县、河源市源城区、内蒙古赤峰市敖汉旗、齐齐哈尔市富拉尔基区、丽水市莲都区、东营市东营区、营口市鲅鱼圈区









亳州市蒙城县、上饶市弋阳县、临汾市洪洞县、湘西州花垣县、广西河池市凤山县、萍乡市莲花县、吉安市永丰县、平凉市华亭县、黔西南安龙县









成都市成华区、肇庆市高要区、德宏傣族景颇族自治州梁河县、惠州市惠阳区、朔州市朔城区、万宁市礼纪镇、广西桂林市荔浦市、大同市阳高县、茂名市化州市









徐州市鼓楼区、海西蒙古族乌兰县、红河开远市、运城市绛县、重庆市云阳县、辽阳市白塔区、吉林市昌邑区、昆明市盘龙区、六安市叶集区









广西贺州市昭平县、梅州市大埔县、郑州市上街区、长春市南关区、中山市南头镇









绥化市安达市、甘孜稻城县、茂名市信宜市、临沂市郯城县、揭阳市揭东区









无锡市江阴市、东方市三家镇、烟台市招远市、杭州市淳安县、甘孜道孚县、邵阳市新邵县、德宏傣族景颇族自治州陇川县、中山市中山港街道、武汉市江岸区









万宁市东澳镇、焦作市武陟县、遂宁市船山区、揭阳市普宁市、南京市雨花台区、松原市扶余市、甘孜道孚县、南京市浦口区、惠州市博罗县

  科技日报北京6月10日电 (记者陆成宽)记者10日从中国科学院自动化研究所获悉,来自该所等单位的科研人员首次证实,多模态大语言模型在训练过程中自己学会了“理解”事物,而且这种理解方式和人类非常类似。这一发现为探索人工智能如何“思考”开辟了新路,也为未来打造像人类一样“理解”世界的人工智能系统打下了基础。相关研究成果在线发表于《自然·机器智能》杂志。

  人类智能的核心,就是能真正“理解”事物。当看到“狗”或“苹果”时,我们不仅能识别它们长什么样,如大小、颜色、形状等,还能明白它们有什么用、能带给我们什么感受、有什么文化意义。这种全方位的理解,是我们认知世界的基础。而随着像ChatGPT这样的大模型飞速发展,科学家们开始好奇:它们能否从海量的文字和图片中,学会像人类一样“理解”事物?

  传统人工智能研究聚焦于物体识别准确率,却鲜少探讨模型是否真正“理解”物体含义。“当前人工智能可以区分猫狗图片,但这种‘识别’与人类‘理解’猫狗有什么本质区别,仍有待揭示。”论文通讯作者、中国科学院自动化研究所研究员何晖光说。

  在这项研究中,科研人员借鉴人脑认知的原理,设计了一个巧妙的实验:让大模型和人类玩“找不同”游戏。实验人员从1854种常见物品中给出3个物品概念,要求选出最不搭的那个。通过分析高达470万次的判断数据,科研人员首次绘制出了大模型的“思维导图”——“概念地图”。

  何晖光介绍,他们从海量实验数据里总结出66个代表人工智能如何“理解”事物的关键角度,并给它们起了名字。研究发现,这些角度非常容易解释清楚,而且与人脑中负责物体加工的区域的神经活动方式高度一致。更重要的是,能同时看懂文字和图片的多模态模型,“思考”和做选择的方式比其他模型更接近人类。

  此外,研究还有个有趣发现,人类做判断时,既会看东西长什么样,比如形状、颜色,也会想它的含义或用途,但大模型更依赖给它贴上的“文字标签”和它学到的抽象概念。“这证明,大模型内部确实发展出了一种有点类似人类的理解世界的方式。”何晖光说道。 【编辑:梁异】

阅读全文