400服务电话:400-1865-909(点击咨询)
长城油烟机全国统一客服热线受理中心
长城油烟机24h上门服务
长城油烟机24小时全国客服电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
长城油烟机全国统一售后服务24小时(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
长城油烟机400财务热线
长城油烟机客服报修电话
客户反馈循环,不断优化服务:我们建立客户反馈循环机制,及时收集并分析客户反馈,不断优化服务流程和质量,提升客户满意度。
我们的售后服务不仅限于维修,还包括设备保养和性能优化建议。
长城油烟机24小时维修客服电话号码
长城油烟机维修服务电话全国服务区域:
绥化市北林区、辽阳市弓长岭区、徐州市铜山区、三明市建宁县、临汾市汾西县、吉安市青原区、昭通市镇雄县、黔南福泉市
广西防城港市东兴市、直辖县仙桃市、乐山市沐川县、内蒙古呼和浩特市玉泉区、铜陵市枞阳县、哈尔滨市阿城区、延边图们市
赣州市上犹县、湛江市霞山区、屯昌县屯城镇、榆林市吴堡县、中山市五桂山街道、平顶山市舞钢市、伊春市伊美区
厦门市翔安区、长沙市岳麓区、常德市桃源县、黄冈市罗田县、安阳市文峰区、广西河池市天峨县
阿坝藏族羌族自治州阿坝县、汉中市佛坪县、忻州市河曲县、内蒙古锡林郭勒盟苏尼特右旗、凉山布拖县
汕头市潮阳区、吉安市永新县、锦州市古塔区、海北刚察县、重庆市石柱土家族自治县、琼海市龙江镇、抚顺市顺城区、扬州市仪征市
湖州市吴兴区、南京市雨花台区、吉安市永新县、红河泸西县、河源市源城区、无锡市滨湖区、宁波市慈溪市、岳阳市岳阳楼区
辽源市龙山区、宁夏固原市隆德县、内蒙古呼伦贝尔市额尔古纳市、上饶市广信区、开封市通许县、通化市梅河口市
临沧市临翔区、三明市宁化县、内蒙古赤峰市翁牛特旗、抚顺市望花区、南昌市西湖区、宜昌市五峰土家族自治县、内蒙古乌兰察布市集宁区、广西河池市凤山县、广安市广安区、德州市德城区
泸州市纳溪区、大兴安岭地区松岭区、万宁市长丰镇、陇南市武都区、本溪市平山区
周口市商水县、广州市荔湾区、吕梁市汾阳市、长春市九台区、杭州市建德市、潍坊市坊子区、大理宾川县、驻马店市遂平县
上海市浦东新区、绍兴市嵊州市、湛江市廉江市、广西南宁市西乡塘区、广西河池市都安瑶族自治县、遵义市赤水市、广西百色市田阳区
咸宁市嘉鱼县、永州市冷水滩区、自贡市荣县、晋城市陵川县、广西柳州市柳南区、濮阳市濮阳县、惠州市龙门县
咸宁市崇阳县、泰安市泰山区、南通市通州区、北京市西城区、福州市平潭县、宁德市寿宁县、萍乡市安源区、中山市南区街道、重庆市南岸区
保山市昌宁县、常州市天宁区、内蒙古鄂尔多斯市伊金霍洛旗、黄冈市黄梅县、日照市五莲县、南充市南部县、聊城市临清市、甘孜色达县
安庆市大观区、宿迁市沭阳县、广州市南沙区、潍坊市潍城区、定西市安定区、朝阳市龙城区
泸州市泸县、广西百色市西林县、杭州市江干区、鸡西市鸡东县、宝鸡市陈仓区
中山市西区街道、商丘市睢县、西安市新城区、十堰市张湾区、张掖市山丹县、滨州市阳信县、菏泽市成武县、广西梧州市蒙山县、曲靖市宣威市
西双版纳勐腊县、杭州市建德市、淮南市田家庵区、芜湖市鸠江区、昭通市镇雄县、安康市宁陕县、鹤岗市绥滨县、内蒙古巴彦淖尔市磴口县、榆林市吴堡县
齐齐哈尔市讷河市、陵水黎族自治县群英乡、安阳市汤阴县、鸡西市鸡冠区、哈尔滨市五常市、广西南宁市武鸣区、中山市西区街道、萍乡市湘东区、内蒙古巴彦淖尔市乌拉特中旗
清远市清新区、广西百色市西林县、广西南宁市邕宁区、娄底市新化县、达州市宣汉县、郑州市上街区、济宁市梁山县、贵阳市修文县
永州市宁远县、鹰潭市月湖区、洛阳市新安县、屯昌县南吕镇、怀化市溆浦县、东营市东营区、泰州市姜堰区
重庆市城口县、广西南宁市青秀区、厦门市湖里区、菏泽市成武县、忻州市代县
阜新市阜新蒙古族自治县、毕节市赫章县、内蒙古乌海市乌达区、焦作市修武县、杭州市滨江区、南阳市宛城区、江门市江海区、临沂市兰陵县、清远市清新区
商洛市柞水县、汕尾市陆河县、杭州市萧山区、杭州市拱墅区、保山市昌宁县、广西玉林市北流市、黔南荔波县、临高县加来镇
文山丘北县、枣庄市山亭区、赣州市寻乌县、阿坝藏族羌族自治州阿坝县、长沙市雨花区、安庆市宿松县、内蒙古呼和浩特市新城区、洛阳市洛宁县、吕梁市临县、佳木斯市桦南县
湛江市吴川市、西安市新城区、济南市章丘区、乐山市沐川县、黔西南兴仁市
400服务电话:400-1865-909(点击咨询)
长城油烟机专业维修站
长城油烟机全国售后专线
长城油烟机售后服务电话24小时热线全国网点:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
长城油烟机售后服务网点联络处(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
长城油烟机售后服务号码
长城油烟机服务维修电话24小时
维修前后安全检测:确保维修前后产品均通过严格的安全检测,保障使用安全。
维修过程中,我们将确保所有更换的配件均经过严格测试,确保质量可靠。
长城油烟机400客服售后电话24小时人工电话多少
长城油烟机维修服务电话全国服务区域:
怀化市芷江侗族自治县、长沙市芙蓉区、吉安市遂川县、内蒙古巴彦淖尔市五原县、安阳市殷都区、龙岩市武平县、芜湖市湾沚区、许昌市襄城县
黄石市大冶市、无锡市惠山区、梅州市平远县、龙岩市新罗区、天津市蓟州区、长沙市望城区、贵阳市清镇市、清远市连南瑶族自治县
吕梁市石楼县、揭阳市揭西县、平顶山市石龙区、万宁市三更罗镇、大兴安岭地区呼玛县、清远市连州市、佳木斯市桦川县
青岛市城阳区、太原市杏花岭区、忻州市岢岚县、济南市平阴县、双鸭山市四方台区、安庆市大观区、内蒙古锡林郭勒盟太仆寺旗、陵水黎族自治县黎安镇、东莞市洪梅镇、延边和龙市
清远市连州市、襄阳市襄州区、赣州市宁都县、台州市温岭市、内蒙古乌兰察布市丰镇市、汕头市金平区、济宁市泗水县、揭阳市普宁市、马鞍山市花山区、岳阳市临湘市
新乡市卫滨区、金华市武义县、重庆市酉阳县、洛阳市洛龙区、中山市坦洲镇、阜阳市颍上县、昆明市寻甸回族彝族自治县、内蒙古鄂尔多斯市东胜区、常州市溧阳市、临沧市凤庆县
成都市郫都区、安阳市内黄县、玉溪市江川区、绥化市安达市、盐城市大丰区、甘南玛曲县
许昌市魏都区、荆州市监利市、广西防城港市港口区、怀化市辰溪县、恩施州巴东县
苏州市太仓市、金华市婺城区、宿州市灵璧县、宁夏石嘴山市大武口区、甘孜乡城县、淮南市寿县
重庆市云阳县、鹤壁市淇县、长治市屯留区、宁波市鄞州区、驻马店市驿城区
邵阳市北塔区、黄山市歙县、玉树玉树市、厦门市湖里区、梅州市平远县、忻州市代县、黄山市徽州区、朔州市怀仁市、安康市旬阳市
齐齐哈尔市铁锋区、甘南卓尼县、渭南市富平县、合肥市长丰县、宜昌市当阳市、广西贺州市八步区、开封市祥符区、阳泉市城区
琼海市嘉积镇、晋中市太谷区、随州市随县、漳州市龙海区、临沂市沂水县、内蒙古兴安盟科尔沁右翼中旗
杭州市滨江区、内蒙古通辽市开鲁县、淮安市涟水县、临高县博厚镇、重庆市北碚区、太原市阳曲县、滁州市全椒县、延边安图县
开封市尉氏县、韶关市武江区、内蒙古通辽市科尔沁左翼后旗、蚌埠市龙子湖区、绍兴市柯桥区、文昌市蓬莱镇、咸阳市杨陵区、临沧市临翔区、平凉市灵台县、临高县调楼镇
海南贵德县、五指山市番阳、齐齐哈尔市依安县、万宁市山根镇、东莞市万江街道、兰州市西固区、海东市互助土族自治县
渭南市合阳县、广西柳州市柳城县、中山市西区街道、宁夏吴忠市青铜峡市、北京市延庆区、黄南同仁市、无锡市锡山区、陇南市礼县、韶关市武江区、内蒙古赤峰市敖汉旗
中山市东凤镇、延边汪清县、红河开远市、自贡市自流井区、陵水黎族自治县三才镇、临沂市蒙阴县、伊春市嘉荫县、绥化市绥棱县、郴州市苏仙区、德阳市绵竹市
新乡市长垣市、西宁市城东区、大连市甘井子区、黑河市北安市、亳州市谯城区、黄冈市麻城市、白沙黎族自治县七坊镇
保亭黎族苗族自治县什玲、徐州市睢宁县、甘孜新龙县、南阳市桐柏县、泸州市江阳区
白山市抚松县、宁德市屏南县、西宁市城北区、吕梁市离石区、甘孜巴塘县
保山市腾冲市、黔南平塘县、齐齐哈尔市克东县、庆阳市西峰区、长春市二道区、广西百色市田阳区、黔南荔波县、果洛达日县、开封市禹王台区
乐山市马边彝族自治县、济南市长清区、黄冈市罗田县、忻州市繁峙县、广西崇左市天等县、梅州市大埔县、天津市静海区、焦作市中站区
鸡西市鸡冠区、南平市延平区、上饶市万年县、五指山市毛阳、宜宾市南溪区、岳阳市华容县、辽源市东辽县
乐东黎族自治县万冲镇、哈尔滨市方正县、天津市武清区、黑河市爱辉区、金华市婺城区
广西河池市南丹县、福州市罗源县、大兴安岭地区漠河市、济南市莱芜区、儋州市王五镇、内蒙古兴安盟乌兰浩特市、阜新市海州区、大连市旅顺口区、南昌市新建区
陇南市两当县、梅州市兴宁市、琼海市长坡镇、芜湖市无为市、连云港市东海县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】