400服务电话:400-1865-909(点击咨询)
永盛太阳能维修24小时服务热线号码
永盛太阳能全国服务电话维修热线
永盛太阳能全国24小时服务热线电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
永盛太阳能快速救援(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
永盛太阳能总部400售后电话热线
永盛太阳能24小时售后电话总部人工客服号码
技术支持远程协助,解决软件问题:对于家电的软件问题或设置问题,我们提供技术支持远程协助服务,通过远程连接帮助客户解决问题。
预约提醒服务,避免遗忘:对于已预约的维修服务,我们会提前通过短信或电话提醒客户,避免客户遗忘。
永盛太阳能快修网点
永盛太阳能维修服务电话全国服务区域:
曲靖市陆良县、东方市大田镇、德阳市绵竹市、伊春市嘉荫县、广西来宾市忻城县、蚌埠市禹会区、阳泉市盂县、北京市平谷区、德州市临邑县
淮安市淮阴区、黄石市黄石港区、楚雄姚安县、抚州市金溪县、榆林市定边县、晋中市祁县、襄阳市保康县、黔南龙里县、深圳市福田区
河源市龙川县、洛阳市涧西区、孝感市应城市、吕梁市孝义市、泰安市岱岳区、曲靖市麒麟区、云浮市云城区
西安市碑林区、甘孜巴塘县、莆田市荔城区、东方市大田镇、张家界市慈利县
内蒙古包头市东河区、龙岩市长汀县、重庆市梁平区、内江市东兴区、昆明市禄劝彝族苗族自治县、盐城市大丰区、上海市宝山区
台州市临海市、铁岭市调兵山市、临夏广河县、重庆市开州区、淮安市淮阴区、开封市禹王台区、辽源市西安区、新乡市延津县
赣州市寻乌县、遵义市余庆县、江门市蓬江区、深圳市盐田区、苏州市常熟市、大同市平城区、宜昌市长阳土家族自治县、锦州市古塔区、文昌市东郊镇
佛山市高明区、东莞市凤岗镇、南昌市东湖区、上海市普陀区、果洛甘德县、内蒙古巴彦淖尔市杭锦后旗、白沙黎族自治县元门乡
北京市门头沟区、嘉兴市海盐县、安庆市桐城市、商丘市民权县、巴中市平昌县、双鸭山市集贤县、马鞍山市博望区、临高县和舍镇、大理弥渡县、滁州市琅琊区
衢州市常山县、辽阳市白塔区、广西桂林市永福县、直辖县天门市、楚雄禄丰市、菏泽市曹县、杭州市富阳区、河源市东源县、淮南市大通区
漳州市平和县、商丘市夏邑县、广西贺州市富川瑶族自治县、赣州市上犹县、西安市临潼区、庆阳市环县
武汉市新洲区、濮阳市南乐县、九江市彭泽县、宁波市江北区、昆明市富民县
绍兴市诸暨市、昆明市晋宁区、甘孜九龙县、内蒙古通辽市霍林郭勒市、泰州市兴化市、潮州市湘桥区、重庆市长寿区
黔东南雷山县、广西柳州市柳江区、东莞市石排镇、铜仁市沿河土家族自治县、南阳市南召县
泉州市晋江市、洛阳市洛龙区、东营市垦利区、嘉兴市海盐县、泰安市肥城市、南京市栖霞区、南昌市进贤县、乐东黎族自治县志仲镇、绍兴市嵊州市
南充市蓬安县、儋州市王五镇、沈阳市和平区、九江市永修县、贵阳市观山湖区、台州市天台县、东莞市茶山镇、延安市吴起县、衡阳市祁东县
文昌市龙楼镇、庆阳市华池县、景德镇市昌江区、吕梁市孝义市、东莞市莞城街道、洛阳市嵩县
三门峡市渑池县、张掖市临泽县、儋州市王五镇、雅安市石棉县、陵水黎族自治县黎安镇、临汾市浮山县、宁德市周宁县、宝鸡市扶风县、玉树囊谦县、甘南卓尼县
大连市西岗区、菏泽市郓城县、汕尾市陆丰市、自贡市自流井区、武汉市东西湖区、常州市新北区、黔南都匀市、重庆市垫江县、商丘市睢县、广州市从化区
资阳市乐至县、定安县富文镇、宁夏固原市彭阳县、广西南宁市横州市、娄底市涟源市、张掖市甘州区、佛山市禅城区、乐东黎族自治县尖峰镇、安庆市桐城市
西安市碑林区、重庆市城口县、东莞市桥头镇、丽水市庆元县、渭南市澄城县、长春市榆树市、温州市洞头区、济南市莱芜区、广西来宾市兴宾区、辽阳市文圣区
宁夏石嘴山市平罗县、延边珲春市、雅安市芦山县、凉山会理市、白城市洮南市、白山市江源区、宜昌市夷陵区、内江市隆昌市
阳泉市矿区、金华市婺城区、鹤壁市鹤山区、广西百色市凌云县、安康市岚皋县、万宁市龙滚镇、中山市五桂山街道、东营市东营区、成都市成华区、昆明市石林彝族自治县
运城市闻喜县、白城市大安市、济宁市泗水县、湛江市霞山区、盘锦市盘山县
文山马关县、平顶山市宝丰县、保亭黎族苗族自治县什玲、文昌市重兴镇、吉安市峡江县、大连市甘井子区、淮北市烈山区、北京市海淀区、重庆市丰都县、丹东市元宝区
温州市龙港市、海西蒙古族茫崖市、七台河市茄子河区、大理永平县、兰州市七里河区、台州市路桥区、六安市叶集区、赣州市安远县
定安县翰林镇、广安市广安区、内蒙古通辽市科尔沁区、大同市阳高县、晋中市祁县、绍兴市新昌县
400服务电话:400-1865-909(点击咨询)
永盛太阳能24h客服报修热线
永盛太阳能售后服务维修网点查询热线
永盛太阳能厂客服维修专线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
永盛太阳能400网点维修联系方式(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
永盛太阳能售后维修电话统一客服中心
永盛太阳能客服热线一网打尽
维修服务维修后清洁服务,焕然一新:在维修完成后,提供家电清洁服务,确保家电外观整洁、内部干净,让客户感受到焕然一新的使用体验。
维修服务维修过程录像保存,责任明确:对重要维修过程进行录像保存,确保维修过程可追溯,责任明确,保障客户权益。
永盛太阳能全国客服热线预约
永盛太阳能维修服务电话全国服务区域:
宜春市万载县、湘潭市雨湖区、咸阳市礼泉县、曲靖市会泽县、抚州市广昌县、宁波市鄞州区、内蒙古鄂尔多斯市杭锦旗、临夏永靖县、天水市秦州区、肇庆市鼎湖区
宁德市古田县、咸阳市淳化县、内蒙古阿拉善盟额济纳旗、宁德市寿宁县、渭南市蒲城县、广西玉林市陆川县、驻马店市新蔡县
怀化市靖州苗族侗族自治县、铜仁市思南县、普洱市澜沧拉祜族自治县、张掖市临泽县、宁波市宁海县、南昌市新建区、沈阳市大东区、大兴安岭地区呼玛县、中山市三角镇、恩施州恩施市
恩施州恩施市、铜川市耀州区、孝感市孝昌县、宜昌市夷陵区、西安市未央区、济南市章丘区、吕梁市交城县
江门市新会区、亳州市谯城区、汕尾市海丰县、威海市乳山市、定安县雷鸣镇、枣庄市峄城区、潮州市湘桥区、中山市民众镇
广安市岳池县、三门峡市湖滨区、六安市霍山县、恩施州咸丰县、达州市开江县
大兴安岭地区呼中区、南通市海安市、贵阳市修文县、济宁市嘉祥县、中山市东区街道、文山西畴县
杭州市萧山区、广西柳州市融安县、广西河池市凤山县、乐山市犍为县、哈尔滨市阿城区、开封市兰考县、韶关市浈江区、漳州市平和县
内蒙古呼和浩特市土默特左旗、永州市双牌县、榆林市佳县、内蒙古锡林郭勒盟正镶白旗、邵阳市隆回县、孝感市云梦县、攀枝花市盐边县、青岛市李沧区、咸阳市长武县
清远市清城区、通化市东昌区、北京市怀柔区、广西梧州市长洲区、临沂市蒙阴县、乐山市夹江县、黄石市西塞山区、长沙市雨花区、揭阳市榕城区、荆州市荆州区
龙岩市长汀县、黔东南剑河县、临汾市洪洞县、丽江市玉龙纳西族自治县、南平市浦城县、内蒙古通辽市科尔沁左翼中旗
铜仁市江口县、广西梧州市岑溪市、德宏傣族景颇族自治州陇川县、洛阳市宜阳县、阜阳市阜南县
韶关市武江区、北京市昌平区、广西玉林市北流市、福州市鼓楼区、忻州市定襄县、临沂市沂水县、怀化市沅陵县、恩施州鹤峰县
西宁市湟中区、湛江市赤坎区、广西柳州市融水苗族自治县、三明市泰宁县、鸡西市滴道区、澄迈县桥头镇、内蒙古赤峰市阿鲁科尔沁旗、湛江市廉江市、菏泽市单县
攀枝花市西区、北京市石景山区、齐齐哈尔市克山县、红河河口瑶族自治县、吉安市峡江县、临高县波莲镇、衢州市衢江区
澄迈县金江镇、广安市武胜县、西安市雁塔区、宁德市柘荣县、延安市子长市、开封市顺河回族区、眉山市彭山区、南阳市桐柏县、鸡西市虎林市、文昌市东路镇
淮安市淮安区、西双版纳景洪市、临沂市沂水县、东莞市石龙镇、白山市靖宇县、滨州市无棣县
益阳市安化县、焦作市中站区、北京市朝阳区、南阳市宛城区、白城市洮北区
衡阳市衡阳县、吕梁市文水县、苏州市吴江区、武威市凉州区、晋中市太谷区、扬州市江都区、三明市宁化县
临沂市沂南县、内蒙古巴彦淖尔市乌拉特后旗、海北祁连县、咸阳市泾阳县、郴州市嘉禾县、湘西州吉首市、四平市铁西区
黔东南剑河县、济南市济阳区、广西百色市靖西市、广州市海珠区、河源市紫金县、广西桂林市秀峰区、郑州市二七区、安庆市望江县、潍坊市奎文区
乐东黎族自治县尖峰镇、安康市汉滨区、广西桂林市平乐县、毕节市七星关区、吕梁市离石区
杭州市江干区、江门市蓬江区、汕头市潮阳区、孝感市云梦县、天津市河西区、洛阳市伊川县、凉山昭觉县、岳阳市临湘市
牡丹江市宁安市、蚌埠市五河县、东莞市东坑镇、荆门市京山市、六安市舒城县、日照市东港区、海东市民和回族土族自治县、苏州市常熟市、平顶山市石龙区、铁岭市清河区
周口市太康县、潍坊市昌乐县、韶关市曲江区、儋州市光村镇、毕节市金沙县、淄博市张店区、凉山雷波县、广西百色市右江区、昆明市安宁市、淮安市盱眙县
内蒙古呼伦贝尔市额尔古纳市、直辖县天门市、湘西州永顺县、丽江市宁蒗彝族自治县、揭阳市揭西县、上饶市铅山县、黄冈市黄州区、宿州市萧县、黄冈市麻城市、镇江市丹阳市
宜春市万载县、洛阳市瀍河回族区、迪庆香格里拉市、上饶市横峰县、九江市柴桑区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】