志高集成灶全天候客服支援
志高集成灶故障快速响应中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
志高集成灶服务网点全覆盖(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
志高集成灶售后24小时全国统一售后服务
志高集成灶400电话咨询
维修服务技师资质认证,确保专业技能:所有技师均通过严格的资质认证,确保具备专业的维修技能和丰富的维修经验,为客户提供优质服务。
志高集成灶维修上门维修附近电话号码查询
志高集成灶客服电话24小时维修网点电话
广西来宾市忻城县、内蒙古乌兰察布市卓资县、湘西州吉首市、临夏康乐县、宜昌市伍家岗区、厦门市翔安区、商洛市柞水县、定西市安定区、运城市河津市
朔州市右玉县、晋城市陵川县、宜昌市秭归县、凉山冕宁县、大理鹤庆县、内蒙古赤峰市林西县、苏州市姑苏区、内蒙古呼和浩特市回民区
自贡市大安区、伊春市伊美区、红河河口瑶族自治县、内江市资中县、澄迈县福山镇、大理永平县、内蒙古兴安盟突泉县、定西市通渭县、舟山市定海区
太原市迎泽区、安庆市大观区、东莞市道滘镇、内蒙古鄂尔多斯市康巴什区、台州市三门县
哈尔滨市道外区、广西百色市那坡县、广西玉林市博白县、渭南市白水县、绍兴市上虞区、黄南同仁市、沈阳市于洪区、宜宾市翠屏区、成都市武侯区、贵阳市乌当区
临沂市平邑县、宁波市慈溪市、洛阳市伊川县、儋州市东成镇、广西防城港市上思县、晋中市榆社县、日照市东港区、晋中市寿阳县
张掖市民乐县、黑河市爱辉区、东莞市大朗镇、黔东南天柱县、阳江市江城区、乐山市金口河区、宜昌市点军区、漯河市源汇区、孝感市汉川市、内蒙古呼伦贝尔市扎兰屯市
金华市婺城区、遂宁市射洪市、白山市抚松县、白沙黎族自治县阜龙乡、上海市闵行区、东方市新龙镇、潍坊市坊子区、南阳市内乡县
海西蒙古族德令哈市、三沙市西沙区、渭南市蒲城县、中山市黄圃镇、西安市鄠邑区、重庆市沙坪坝区、洛阳市老城区、儋州市光村镇、合肥市蜀山区
运城市芮城县、郑州市上街区、河源市源城区、大理弥渡县、海口市秀英区、济南市天桥区、南昌市东湖区、南通市如东县、韶关市武江区、张家界市武陵源区
莆田市秀屿区、昌江黎族自治县叉河镇、宜昌市夷陵区、牡丹江市阳明区、内蒙古巴彦淖尔市五原县、潍坊市潍城区、海南兴海县
黔南惠水县、楚雄永仁县、内蒙古赤峰市巴林右旗、大理云龙县、贵阳市白云区、榆林市府谷县、蚌埠市怀远县、肇庆市封开县、延边龙井市
中山市阜沙镇、遂宁市船山区、东莞市东城街道、甘孜德格县、德宏傣族景颇族自治州陇川县、内蒙古锡林郭勒盟正镶白旗、湘潭市湘潭县
宜宾市珙县、太原市晋源区、文昌市东路镇、盐城市建湖县、绥化市望奎县、东营市东营区、嘉兴市桐乡市、嘉兴市海宁市
广西柳州市鱼峰区、万宁市北大镇、东莞市企石镇、北京市昌平区、内蒙古包头市东河区、临高县多文镇
韶关市浈江区、马鞍山市雨山区、内蒙古呼伦贝尔市满洲里市、长沙市望城区、上海市黄浦区、杭州市下城区、宜宾市翠屏区、内蒙古呼伦贝尔市阿荣旗
文山马关县、威海市环翠区、滨州市滨城区、牡丹江市林口县、赣州市瑞金市、大理巍山彝族回族自治县、漳州市长泰区、徐州市新沂市、东莞市横沥镇
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】