Vanward壁挂炉售后中心电话24h客服服务热线
Vanward壁挂炉24小时报修网站:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
Vanward壁挂炉售后电话24小时在线服务|全国统一客户报修中心(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
Vanward壁挂炉400维修服务咨询
Vanward壁挂炉维修网点售后服务电话今日客服热线
维修过程透明化,增强信任:我们致力于将维修过程透明化,通过视频直播、图文记录等方式,让客户实时了解维修进度和情况,增强信任感。
Vanward壁挂炉售后客服服务网点电话全市网点
Vanward壁挂炉急修热线
内蒙古包头市石拐区、深圳市宝安区、清远市连山壮族瑶族自治县、青岛市即墨区、本溪市桓仁满族自治县、肇庆市鼎湖区、佳木斯市桦川县
南京市高淳区、衡阳市石鼓区、四平市铁东区、北京市昌平区、广西桂林市永福县
广西梧州市长洲区、哈尔滨市南岗区、株洲市炎陵县、温州市文成县、内蒙古兴安盟科尔沁右翼前旗、内蒙古赤峰市巴林左旗、北京市房山区、宝鸡市陈仓区
潍坊市青州市、盘锦市盘山县、湘西州花垣县、吉安市吉安县、广西南宁市西乡塘区
广西来宾市忻城县、文山富宁县、武威市古浪县、云浮市云城区、鸡西市鸡冠区、鄂州市华容区、宜昌市宜都市、延安市延长县、内蒙古呼伦贝尔市牙克石市、驻马店市泌阳县
西安市阎良区、琼海市万泉镇、孝感市孝昌县、辽阳市灯塔市、阜阳市颍泉区、大同市灵丘县、玉溪市易门县、商洛市商州区、咸阳市三原县
长治市平顺县、新乡市红旗区、广西来宾市合山市、苏州市张家港市、商丘市睢阳区、澄迈县仁兴镇、襄阳市老河口市、济南市济阳区、哈尔滨市阿城区、内蒙古通辽市扎鲁特旗
内蒙古阿拉善盟阿拉善左旗、嘉兴市嘉善县、平顶山市湛河区、内蒙古赤峰市巴林右旗、六安市金安区、周口市淮阳区、上海市奉贤区、陇南市西和县、甘孜得荣县、东莞市茶山镇
荆州市洪湖市、广西河池市天峨县、沈阳市法库县、贵阳市白云区、屯昌县屯城镇
吉安市庐陵新区、汕尾市陆河县、安阳市汤阴县、驻马店市上蔡县、玉溪市通海县
双鸭山市集贤县、甘孜泸定县、绵阳市三台县、宿迁市泗阳县、济南市钢城区、凉山甘洛县
济南市历城区、延安市志丹县、长治市潞城区、绥化市兰西县、内蒙古兴安盟科尔沁右翼中旗、韶关市乳源瑶族自治县
济宁市任城区、广西梧州市长洲区、内蒙古呼和浩特市武川县、郑州市金水区、广西南宁市青秀区、广西桂林市资源县
深圳市光明区、东莞市常平镇、渭南市华州区、铁岭市西丰县、广西崇左市江州区、肇庆市怀集县、临沧市云县、韶关市始兴县、新乡市延津县、淄博市张店区
烟台市莱州市、上饶市铅山县、龙岩市连城县、榆林市佳县、蚌埠市怀远县、屯昌县屯城镇、大庆市让胡路区、广西河池市南丹县、潍坊市安丘市、海南兴海县
广西贵港市桂平市、六安市裕安区、大理巍山彝族回族自治县、内蒙古通辽市科尔沁区、白城市洮北区、广州市番禺区、广安市武胜县、晋城市陵川县
内蒙古赤峰市敖汉旗、常德市石门县、广西桂林市全州县、东莞市长安镇、太原市迎泽区、赣州市定南县
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】