400服务电话:400-1865-909(点击咨询)
德盾智能锁全国咨询热线
德盾智能锁售后电话号码全国24小时报修中心
德盾智能锁400客服咨询热线电话/24小时售后服务电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁24小时全国服务售后热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁全国统一售后服务维修电话/24小时统一维修网点热线
德盾智能锁服务热线畅通
专业维修证书:维修完成后,提供官方认可的维修证书,保障维修质量。
维修成本透明化:明确列出维修所需的费用,包括人工费和配件费,确保费用透明。
德盾智能锁全国售后点热线电话
德盾智能锁维修服务电话全国服务区域:
厦门市同安区、南充市南部县、济宁市嘉祥县、汕头市南澳县、儋州市那大镇、湛江市霞山区
忻州市原平市、黄冈市浠水县、衡阳市雁峰区、天津市和平区、北京市房山区、松原市长岭县、青岛市莱西市、丹东市宽甸满族自治县、忻州市忻府区、三亚市海棠区
楚雄禄丰市、常州市金坛区、长治市潞城区、临汾市大宁县、温州市文成县、大连市瓦房店市、广西来宾市合山市、宜昌市宜都市
北京市通州区、上海市金山区、潍坊市高密市、榆林市横山区、黔南贵定县、遵义市凤冈县、许昌市襄城县、南充市阆中市、三明市永安市、运城市垣曲县
内蒙古呼和浩特市和林格尔县、许昌市禹州市、南昌市南昌县、抚州市黎川县、广西玉林市容县
杭州市余杭区、江门市开平市、德州市夏津县、韶关市乐昌市、巴中市通江县、淮安市洪泽区
洛阳市栾川县、商丘市虞城县、琼海市石壁镇、兰州市七里河区、合肥市巢湖市、内蒙古包头市昆都仑区、雅安市宝兴县、宜昌市猇亭区、蚌埠市怀远县、泸州市纳溪区
荆门市掇刀区、临夏永靖县、许昌市鄢陵县、毕节市黔西市、安康市石泉县
黔东南岑巩县、晋城市阳城县、白城市通榆县、许昌市魏都区、广州市荔湾区
株洲市茶陵县、宁夏银川市贺兰县、长春市二道区、内江市市中区、珠海市香洲区、商丘市梁园区、鄂州市鄂城区
成都市双流区、鄂州市梁子湖区、抚州市东乡区、儋州市排浦镇、玉树囊谦县、青岛市城阳区、驻马店市新蔡县、金华市婺城区、黑河市逊克县、哈尔滨市道里区
宁夏银川市西夏区、南平市政和县、福州市鼓楼区、大理剑川县、合肥市庐阳区
内蒙古呼和浩特市托克托县、龙岩市永定区、广西玉林市玉州区、鹤岗市南山区、宜春市万载县
辽源市龙山区、宁夏固原市隆德县、内蒙古呼伦贝尔市额尔古纳市、上饶市广信区、开封市通许县、通化市梅河口市
广西梧州市长洲区、丹东市元宝区、琼海市潭门镇、庆阳市正宁县、黑河市孙吴县、东莞市企石镇、内蒙古兴安盟阿尔山市
滁州市凤阳县、贵阳市修文县、宁波市奉化区、株洲市荷塘区、直辖县潜江市、三明市清流县、本溪市溪湖区、马鞍山市花山区、遵义市绥阳县
广西贺州市昭平县、梅州市大埔县、郑州市上街区、长春市南关区、中山市南头镇
湛江市坡头区、漳州市龙海区、龙岩市新罗区、伊春市汤旺县、淄博市淄川区、内蒙古锡林郭勒盟锡林浩特市、宣城市泾县
贵阳市南明区、贵阳市息烽县、荆州市松滋市、楚雄牟定县、大理巍山彝族回族自治县
内蒙古赤峰市喀喇沁旗、丽水市缙云县、重庆市黔江区、楚雄姚安县、吉安市新干县
汕头市龙湖区、临高县博厚镇、东莞市企石镇、铜陵市义安区、漯河市临颍县、东营市利津县、绍兴市嵊州市
衡阳市南岳区、北京市东城区、咸阳市泾阳县、临沂市莒南县、鹤岗市东山区、东莞市南城街道、长治市平顺县、自贡市沿滩区
吕梁市交城县、汕头市南澳县、玉溪市华宁县、海北海晏县、咸宁市通山县
甘孜色达县、文山丘北县、恩施州咸丰县、泰州市泰兴市、宜昌市宜都市
咸宁市嘉鱼县、永州市冷水滩区、自贡市荣县、晋城市陵川县、广西柳州市柳南区、濮阳市濮阳县、惠州市龙门县
泉州市鲤城区、韶关市乳源瑶族自治县、南平市建瓯市、南京市鼓楼区、湛江市遂溪县、辽源市东辽县、凉山昭觉县、广州市越秀区
商丘市睢县、株洲市荷塘区、鹤岗市绥滨县、武汉市武昌区、绍兴市越城区
400服务电话:400-1865-909(点击咨询)
德盾智能锁维修电话24小时服务电话预约
德盾智能锁全国服务售后电话(400人工客服中心)24小时热线
德盾智能锁24小时厂家24小时售后服务电话号码:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁售后维修服务通(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁全国维修服务网点
德盾智能锁24小时人工客服热线号码
维修服务旧家电以旧换新政策,促进循环:推出旧家电以旧换新政策,鼓励客户更换高效节能的新家电,促进家电产品的循环利用。
维修后清洁服务,恢复家居整洁:在维修完成后,我们会进行必要的清洁工作,确保维修现场恢复整洁,不影响客户的家居环境。
德盾智能锁全国统一各点联系方式
德盾智能锁维修服务电话全国服务区域:
鹤岗市兴山区、苏州市昆山市、深圳市光明区、孝感市孝昌县、白城市镇赉县、宁夏吴忠市青铜峡市、内蒙古巴彦淖尔市乌拉特前旗、佳木斯市抚远市、岳阳市华容县、济南市历城区
海口市龙华区、东营市广饶县、新乡市红旗区、广西南宁市良庆区、济南市市中区、兰州市城关区、张家界市永定区、莆田市涵江区
通化市辉南县、长治市潞城区、延安市洛川县、盘锦市双台子区、文山西畴县、安庆市迎江区
三明市永安市、毕节市大方县、安阳市殷都区、岳阳市君山区、内蒙古呼伦贝尔市扎兰屯市、哈尔滨市南岗区、郑州市金水区、黔东南麻江县
长治市沁县、孝感市云梦县、普洱市景谷傣族彝族自治县、酒泉市肃州区、长春市朝阳区、昭通市大关县、东莞市万江街道、淮南市凤台县、长春市德惠市、广西桂林市叠彩区
成都市大邑县、日照市东港区、泰州市高港区、中山市坦洲镇、绵阳市江油市、丽水市缙云县、沈阳市大东区、德宏傣族景颇族自治州陇川县、贵阳市白云区
玉溪市江川区、娄底市娄星区、宜宾市珙县、昭通市鲁甸县、中山市黄圃镇、文昌市冯坡镇、南昌市湾里区、阿坝藏族羌族自治州理县、十堰市郧西县
澄迈县大丰镇、澄迈县瑞溪镇、嘉峪关市新城镇、屯昌县新兴镇、宁夏吴忠市同心县、马鞍山市当涂县、盐城市响水县、荆门市沙洋县、湘西州吉首市
湛江市廉江市、临高县加来镇、长治市黎城县、汉中市略阳县、十堰市竹溪县、菏泽市巨野县、广西桂林市恭城瑶族自治县、定西市渭源县
哈尔滨市道里区、淮安市盱眙县、运城市垣曲县、鸡西市滴道区、六安市裕安区、牡丹江市宁安市、保亭黎族苗族自治县什玲
漳州市云霄县、临高县和舍镇、郑州市荥阳市、韶关市乳源瑶族自治县、文山西畴县、内蒙古通辽市扎鲁特旗、绵阳市三台县、黑河市嫩江市、周口市扶沟县、蚌埠市怀远县
长沙市芙蓉区、广西贺州市平桂区、甘南合作市、泰安市宁阳县、内蒙古阿拉善盟阿拉善左旗、德州市庆云县、广西南宁市兴宁区、荆门市掇刀区、绥化市明水县、黔东南镇远县
广西北海市铁山港区、南京市建邺区、南充市嘉陵区、大兴安岭地区加格达奇区、黔南瓮安县、黄山市黄山区
湘西州保靖县、中山市东区街道、黔西南兴仁市、珠海市斗门区、德州市德城区、成都市金堂县、内蒙古鄂尔多斯市达拉特旗、伊春市友好区、新乡市延津县、淮安市清江浦区
忻州市静乐县、内蒙古呼和浩特市赛罕区、儋州市大成镇、湖州市德清县、双鸭山市四方台区
昭通市昭阳区、抚顺市东洲区、温州市瑞安市、南京市栖霞区、绥化市明水县、抚顺市新宾满族自治县、延边图们市、大兴安岭地区塔河县、抚顺市顺城区
宿州市埇桥区、伊春市友好区、池州市石台县、德阳市绵竹市、天津市蓟州区、万宁市南桥镇、海口市龙华区、酒泉市阿克塞哈萨克族自治县、广西来宾市忻城县
青岛市胶州市、渭南市大荔县、潮州市湘桥区、重庆市黔江区、湘西州龙山县、永州市新田县、重庆市万州区、内蒙古乌海市海勃湾区、西安市灞桥区、内蒙古赤峰市克什克腾旗
白沙黎族自治县青松乡、吉安市青原区、广西贺州市钟山县、陇南市文县、荆州市洪湖市、达州市渠县、临汾市浮山县
保山市昌宁县、临夏东乡族自治县、内蒙古鄂尔多斯市杭锦旗、嘉兴市南湖区、毕节市金沙县、长春市榆树市、新乡市延津县、宝鸡市扶风县、丹东市宽甸满族自治县
宁夏石嘴山市大武口区、广西桂林市灌阳县、辽阳市文圣区、濮阳市华龙区、汕头市潮阳区、中山市神湾镇
周口市项城市、龙岩市永定区、广州市荔湾区、嘉兴市桐乡市、广西柳州市融安县、黄冈市麻城市
聊城市茌平区、铜仁市江口县、广西百色市平果市、安阳市林州市、郑州市登封市、九江市浔阳区、长治市潞州区、乐东黎族自治县志仲镇
果洛久治县、黔西南安龙县、上饶市弋阳县、黄冈市团风县、蚌埠市五河县
太原市小店区、白山市浑江区、邵阳市隆回县、临汾市侯马市、威海市乳山市、威海市荣成市、张掖市临泽县、临夏广河县、南京市建邺区、雅安市名山区
邵阳市大祥区、绥化市明水县、丽水市青田县、临汾市汾西县、佳木斯市富锦市、玉溪市华宁县、东莞市黄江镇、达州市通川区、锦州市义县
榆林市府谷县、上饶市弋阳县、广西桂林市恭城瑶族自治县、文昌市文教镇、临夏临夏市、儋州市白马井镇、阿坝藏族羌族自治州阿坝县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】