400服务电话:400-1865-909(点击咨询)
德盾智能锁售后客服电话400热线
德盾智能锁官方24h售后服务
德盾智能锁400报修通渠:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁全国24小时服务网点电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁热线客服支持
德盾智能锁400客服咨询热线电话/全国统一售后电话24小时人工电话
维修完成后,我们会进行设备性能测试,确保设备性能恢复到最佳状态。
维修服务配件真伪验证服务,保障品质:提供配件真伪验证服务,确保更换的配件均为原厂正品或经过严格筛选的优质配件,保障维修品质。
德盾智能锁全国24小时各售后服务电话
德盾智能锁维修服务电话全国服务区域:
屯昌县南吕镇、定安县雷鸣镇、通化市东昌区、成都市郫都区、临高县博厚镇、烟台市牟平区、娄底市涟源市、娄底市娄星区、白城市洮北区
儋州市和庆镇、乐东黎族自治县莺歌海镇、鹤岗市向阳区、临高县和舍镇、赣州市章贡区、滁州市南谯区、德州市禹城市、琼海市龙江镇
上饶市广信区、聊城市东昌府区、南京市栖霞区、开封市祥符区、湛江市坡头区、南阳市社旗县、德阳市罗江区、台州市椒江区、儋州市白马井镇、黔南平塘县
内蒙古锡林郭勒盟阿巴嘎旗、南充市西充县、蚌埠市龙子湖区、鹰潭市贵溪市、三亚市吉阳区、江门市台山市、盐城市亭湖区、杭州市拱墅区、宁夏银川市贺兰县、开封市兰考县
恩施州恩施市、临沂市费县、七台河市新兴区、琼海市大路镇、新乡市牧野区、丹东市凤城市、景德镇市昌江区
广西桂林市资源县、内蒙古乌兰察布市兴和县、安庆市怀宁县、广西崇左市宁明县、衢州市常山县、福州市台江区、烟台市莱阳市、澄迈县大丰镇
上海市静安区、郑州市上街区、淄博市沂源县、梅州市梅江区、杭州市萧山区、茂名市化州市、鸡西市城子河区、沈阳市辽中区、衡阳市常宁市
吕梁市离石区、红河弥勒市、广州市越秀区、红河河口瑶族自治县、牡丹江市林口县、湛江市坡头区
眉山市青神县、阜阳市颍东区、广西桂林市灵川县、大理漾濞彝族自治县、内蒙古包头市昆都仑区、昆明市东川区、岳阳市岳阳县、滁州市天长市、五指山市毛道、宁夏中卫市中宁县
三亚市海棠区、广西南宁市上林县、阜新市彰武县、怒江傈僳族自治州福贡县、广州市天河区
安庆市迎江区、济源市市辖区、鹤岗市东山区、泸州市泸县、肇庆市高要区、凉山布拖县、十堰市茅箭区、泸州市合江县、辽源市龙山区、重庆市九龙坡区
六安市叶集区、台州市椒江区、鹰潭市余江区、贵阳市花溪区、中山市板芙镇、哈尔滨市南岗区、朝阳市建平县、玉溪市易门县、广西桂林市临桂区、白沙黎族自治县阜龙乡
丽水市莲都区、湘西州古丈县、昭通市鲁甸县、广西玉林市博白县、商丘市睢阳区、怀化市洪江市、南平市政和县、广西玉林市兴业县
淄博市博山区、信阳市潢川县、宜春市上高县、广西梧州市藤县、文昌市文教镇、郑州市上街区、北京市西城区、许昌市鄢陵县
漯河市舞阳县、抚顺市望花区、琼海市中原镇、濮阳市华龙区、清远市清城区、衢州市江山市、内蒙古呼和浩特市赛罕区、长治市武乡县
昌江黎族自治县石碌镇、澄迈县福山镇、烟台市莱山区、重庆市南岸区、宁波市余姚市
驻马店市遂平县、西双版纳勐腊县、西安市高陵区、北京市西城区、周口市郸城县、海口市龙华区、广西柳州市三江侗族自治县、鸡西市城子河区
庆阳市合水县、定西市临洮县、广安市岳池县、大理祥云县、开封市顺河回族区、白银市白银区
上海市黄浦区、龙岩市永定区、文昌市翁田镇、广州市天河区、儋州市那大镇、上海市虹口区、聊城市东阿县、中山市小榄镇、连云港市东海县
伊春市铁力市、金华市兰溪市、宣城市广德市、宿州市泗县、红河红河县、抚州市南城县
天水市清水县、武汉市黄陂区、佛山市顺德区、南京市雨花台区、黄石市黄石港区、太原市清徐县
襄阳市宜城市、重庆市沙坪坝区、天水市张家川回族自治县、内蒙古呼和浩特市托克托县、黔南平塘县、深圳市福田区、曲靖市宣威市
内蒙古鄂尔多斯市杭锦旗、晋城市陵川县、安庆市宜秀区、青岛市即墨区、张掖市临泽县
琼海市嘉积镇、九江市德安县、宜宾市翠屏区、驻马店市汝南县、淄博市临淄区、北京市东城区、天津市蓟州区、东莞市樟木头镇、广西柳州市柳北区
黔东南从江县、潍坊市昌乐县、重庆市奉节县、潍坊市潍城区、菏泽市鄄城县、东方市四更镇、武汉市东西湖区、昆明市安宁市、内蒙古包头市青山区、株洲市荷塘区
伊春市乌翠区、宣城市广德市、西安市临潼区、黄山市祁门县、重庆市石柱土家族自治县、漯河市舞阳县
汉中市城固县、攀枝花市东区、海南贵德县、汕尾市陆丰市、徐州市云龙区、伊春市南岔县、湖州市吴兴区、东方市八所镇
400服务电话:400-1865-909(点击咨询)
德盾智能锁预约24H服务热线电话
德盾智能锁售后24小时服务热线联系方式故障维修电话
德盾智能锁售后在线报修平台:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁售后24小时维修电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
德盾智能锁400全国售后总部客服电话
德盾智能锁热线电话查询
多渠道报修入口,方便快捷:我们提供电话、网站、APP等多种报修入口,让客户可以根据自己的习惯选择最便捷的方式报修。
维修服务在线评价互动,促进服务优化:我们鼓励客户在线评价维修服务,并设置互动环节,解答客户疑问,收集宝贵意见,促进服务不断优化。
德盾智能锁客服热线今日畅通
德盾智能锁维修服务电话全国服务区域:
佳木斯市前进区、通化市集安市、海东市化隆回族自治县、榆林市子洲县、台州市椒江区、南京市建邺区、阳泉市平定县
内蒙古阿拉善盟阿拉善左旗、延边延吉市、德州市禹城市、昌江黎族自治县海尾镇、枣庄市峄城区、成都市崇州市、清远市清新区
南京市秦淮区、南京市溧水区、广西桂林市全州县、文山丘北县、晋中市左权县、邵阳市新邵县、大庆市林甸县、漯河市临颍县
葫芦岛市兴城市、滨州市滨城区、汕头市澄海区、许昌市建安区、延安市宜川县、安康市紫阳县、成都市都江堰市、广西柳州市柳南区、东莞市望牛墩镇
台州市三门县、德阳市旌阳区、广西梧州市岑溪市、内蒙古乌兰察布市四子王旗、普洱市景东彝族自治县
长治市屯留区、邵阳市大祥区、宝鸡市麟游县、哈尔滨市延寿县、阜阳市界首市、襄阳市宜城市、南通市如皋市
青岛市城阳区、昭通市巧家县、文昌市抱罗镇、商丘市柘城县、蚌埠市五河县、揭阳市揭西县、济南市历下区、内江市东兴区
九江市庐山市、海南贵南县、宁波市北仑区、天水市秦安县、忻州市岢岚县、淄博市博山区、渭南市临渭区、甘孜理塘县、通化市梅河口市
江门市鹤山市、黔东南黎平县、牡丹江市西安区、广西崇左市天等县、鹤壁市浚县、福州市长乐区、内江市东兴区、楚雄永仁县
东莞市大朗镇、南阳市新野县、徐州市丰县、屯昌县西昌镇、临沧市永德县
内蒙古呼伦贝尔市扎兰屯市、十堰市竹山县、成都市金堂县、内蒙古通辽市科尔沁左翼中旗、台州市温岭市、广西桂林市平乐县
中山市石岐街道、长沙市望城区、九江市共青城市、邵阳市绥宁县、贵阳市云岩区、广西柳州市三江侗族自治县、厦门市集美区
开封市龙亭区、忻州市宁武县、东莞市莞城街道、雅安市天全县、吉安市新干县、宁夏固原市原州区、恩施州宣恩县、昆明市东川区、甘孜丹巴县
北京市顺义区、黔南平塘县、伊春市友好区、楚雄禄丰市、阿坝藏族羌族自治州金川县
天津市蓟州区、贵阳市白云区、广西崇左市扶绥县、邵阳市邵东市、晋中市左权县、湛江市吴川市
曲靖市富源县、株洲市渌口区、晋中市灵石县、重庆市荣昌区、海东市循化撒拉族自治县、松原市扶余市、大同市云州区、大庆市肇源县、西安市新城区
定安县龙河镇、伊春市大箐山县、重庆市江津区、南通市海门区、东营市垦利区
吉安市安福县、淮北市杜集区、伊春市铁力市、邵阳市洞口县、文山文山市、南通市如皋市、伊春市伊美区、中山市板芙镇、汕头市澄海区、昭通市彝良县
内蒙古锡林郭勒盟锡林浩特市、乐东黎族自治县黄流镇、广西崇左市天等县、白沙黎族自治县阜龙乡、临汾市侯马市、广安市武胜县、通化市辉南县、焦作市沁阳市、重庆市北碚区、东莞市横沥镇
内蒙古包头市固阳县、内江市东兴区、汕头市潮南区、上饶市德兴市、黔东南施秉县、邵阳市城步苗族自治县、绥化市望奎县、东莞市石排镇、宜昌市长阳土家族自治县、咸阳市长武县
淮南市八公山区、文昌市抱罗镇、大同市灵丘县、苏州市吴中区、黔南平塘县
通化市柳河县、新乡市原阳县、哈尔滨市尚志市、广州市荔湾区、广西百色市田阳区、宿州市灵璧县、赣州市赣县区、贵阳市修文县、沈阳市铁西区、莆田市荔城区
长治市屯留区、阿坝藏族羌族自治州黑水县、上饶市玉山县、黔东南黄平县、延安市洛川县、邵阳市双清区、邵阳市新宁县
烟台市招远市、屯昌县南坤镇、烟台市牟平区、镇江市润州区、广西来宾市忻城县、黄冈市浠水县、宁波市镇海区、太原市万柏林区、南充市阆中市、文昌市翁田镇
黔东南三穗县、滨州市邹平市、株洲市炎陵县、内蒙古呼和浩特市武川县、安庆市迎江区、潍坊市临朐县、东方市板桥镇、南昌市新建区、定安县岭口镇
河源市龙川县、昆明市石林彝族自治县、临夏和政县、舟山市岱山县、佳木斯市汤原县、南通市海门区、阳江市阳春市、台州市温岭市、儋州市峨蔓镇、吉安市吉州区
广西河池市环江毛南族自治县、哈尔滨市木兰县、运城市夏县、绍兴市嵊州市、赣州市兴国县、马鞍山市雨山区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】