400服务电话:400-1865-909(点击咨询)
ZONBO热水器市区服务热线
ZONBO热水器售后服务中心电话全国网点
ZONBO热水器售后中心电话统一客服热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
ZONBO热水器售后电话24小时人工电话/请拨打400报修热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
ZONBO热水器快速维保
ZONBO热水器全天客服报修热线
家电升级建议,享受最新科技:根据客户家电的实际情况和使用需求,我们提供专业的升级建议,帮助客户享受最新的家电科技。
优质客户体验:致力于提供优质的客户体验,让您满意而归。
ZONBO热水器服务专线在线
ZONBO热水器维修服务电话全国服务区域:
南充市营山县、常德市桃源县、东莞市企石镇、广西南宁市隆安县、赣州市南康区、宁波市奉化区、五指山市毛道、北京市房山区、株洲市渌口区、白沙黎族自治县七坊镇
葫芦岛市绥中县、连云港市赣榆区、聊城市冠县、辽阳市白塔区、宁波市奉化区
韶关市浈江区、内蒙古兴安盟科尔沁右翼中旗、连云港市灌云县、肇庆市德庆县、东莞市石龙镇、大理大理市、吕梁市兴县
深圳市龙华区、天津市东丽区、青岛市黄岛区、大兴安岭地区呼玛县、海南贵南县、重庆市大渡口区、营口市鲅鱼圈区、怒江傈僳族自治州泸水市
本溪市本溪满族自治县、内蒙古通辽市扎鲁特旗、安顺市普定县、铜川市印台区、驻马店市确山县、娄底市娄星区、陇南市成县、青岛市即墨区、商丘市睢县
长春市二道区、儋州市白马井镇、洛阳市孟津区、屯昌县南吕镇、盘锦市盘山县
黄冈市蕲春县、济南市商河县、赣州市信丰县、雅安市天全县、福州市连江县、通化市梅河口市
张家界市慈利县、成都市锦江区、湖州市南浔区、濮阳市南乐县、甘孜白玉县、大理鹤庆县
万宁市后安镇、吕梁市柳林县、宣城市绩溪县、无锡市滨湖区、宁夏吴忠市青铜峡市、宁波市北仑区、济宁市微山县、怀化市芷江侗族自治县、东莞市洪梅镇、湘潭市湘乡市
永州市双牌县、锦州市太和区、盐城市亭湖区、南通市如东县、莆田市仙游县、苏州市吴江区、凉山喜德县、黄山市祁门县、黄石市大冶市、泉州市洛江区
澄迈县加乐镇、内江市东兴区、台州市椒江区、深圳市福田区、临高县加来镇、淮安市盱眙县
合肥市长丰县、齐齐哈尔市依安县、聊城市冠县、果洛达日县、南通市如皋市、周口市沈丘县、广西贺州市昭平县
宁夏吴忠市青铜峡市、攀枝花市米易县、晋中市灵石县、安庆市太湖县、临高县多文镇、南通市启东市、湛江市麻章区、安顺市普定县、常州市金坛区、万宁市东澳镇
南京市六合区、邵阳市邵东市、庆阳市正宁县、咸阳市永寿县、重庆市江北区、广西南宁市邕宁区、黔东南台江县、玉溪市华宁县、郴州市资兴市
抚州市黎川县、内蒙古乌兰察布市兴和县、东莞市望牛墩镇、佳木斯市桦川县、洛阳市偃师区、常德市石门县
中山市三乡镇、西安市长安区、马鞍山市含山县、晋中市榆社县、长春市宽城区、雅安市名山区、葫芦岛市龙港区、郑州市上街区
济南市槐荫区、宁夏吴忠市青铜峡市、东莞市万江街道、抚顺市新抚区、佛山市高明区、大庆市林甸县、上海市普陀区、广西崇左市宁明县
吉林市船营区、黄冈市英山县、内蒙古锡林郭勒盟正镶白旗、甘孜泸定县、无锡市惠山区、汉中市略阳县、六安市叶集区
扬州市江都区、临沂市郯城县、铜陵市铜官区、洛阳市栾川县、大同市云州区、运城市芮城县、济宁市兖州区、沈阳市苏家屯区
许昌市魏都区、金华市磐安县、商丘市宁陵县、平凉市泾川县、宜宾市翠屏区
南京市江宁区、重庆市武隆区、哈尔滨市呼兰区、营口市老边区、汉中市城固县、宜昌市长阳土家族自治县、榆林市定边县
临夏和政县、酒泉市金塔县、泰安市泰山区、湛江市吴川市、洛阳市西工区
盐城市建湖县、定安县龙门镇、沈阳市沈河区、新乡市获嘉县、晋中市昔阳县
大庆市肇州县、广西桂林市七星区、白城市镇赉县、平顶山市湛河区、商丘市虞城县、上海市徐汇区、文昌市龙楼镇
临沂市蒙阴县、新乡市牧野区、临沂市平邑县、盘锦市兴隆台区、广西梧州市苍梧县、凉山木里藏族自治县、沈阳市于洪区、葫芦岛市连山区、泉州市惠安县
宝鸡市渭滨区、黄南河南蒙古族自治县、果洛班玛县、吉林市蛟河市、广西贺州市八步区、四平市梨树县、安阳市林州市
永州市冷水滩区、西安市灞桥区、长治市潞城区、盐城市大丰区、恩施州宣恩县、嘉兴市嘉善县、长治市长子县
400服务电话:400-1865-909(点击咨询)
ZONBO热水器总部400售后服务客服热线电话
ZONBO热水器全能客服热线
ZONBO热水器全国24小时维修服务网点电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
ZONBO热水器售后求助热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
ZONBO热水器400官网报修服务
ZONBO热水器售后服务点24小时热线号码
客户满意度调查,持续改进:我们定期进行客户满意度调查,收集您的意见和建议,以便我们持续改进服务,提升客户满意度。
维修服务保修期延长服务,安心保障:针对特定维修项目,提供保修期延长服务,让客户享受更长时间的安心保障。
ZONBO热水器全国维修平台
ZONBO热水器维修服务电话全国服务区域:
北京市通州区、黔南三都水族自治县、运城市盐湖区、平顶山市卫东区、恩施州来凤县、延安市延川县、铁岭市清河区、重庆市巫山县
内蒙古锡林郭勒盟阿巴嘎旗、鹰潭市月湖区、宜昌市当阳市、中山市西区街道、商丘市梁园区、乐东黎族自治县尖峰镇、大兴安岭地区新林区、本溪市平山区
许昌市魏都区、荆州市监利市、广西防城港市港口区、怀化市辰溪县、恩施州巴东县
湘潭市湘潭县、常州市溧阳市、六安市金安区、玉树曲麻莱县、晋中市榆社县、合肥市包河区、宁夏吴忠市盐池县、广西梧州市藤县
保山市龙陵县、南京市建邺区、河源市紫金县、临汾市洪洞县、濮阳市濮阳县、宜宾市屏山县
葫芦岛市兴城市、延安市延长县、漯河市郾城区、阳泉市矿区、赣州市上犹县、遵义市红花岗区、湖州市南浔区、北京市海淀区、德阳市旌阳区
白银市平川区、永州市宁远县、临沂市费县、江门市台山市、内蒙古赤峰市松山区、曲靖市马龙区、咸阳市旬邑县、九江市彭泽县、平凉市华亭县
雅安市汉源县、文山砚山县、甘孜炉霍县、咸阳市三原县、定西市安定区、广州市增城区
济南市莱芜区、赣州市南康区、东莞市黄江镇、长治市沁县、佳木斯市向阳区、临汾市襄汾县
屯昌县西昌镇、甘孜白玉县、巴中市通江县、太原市娄烦县、泉州市安溪县
郴州市桂东县、烟台市栖霞市、广州市越秀区、温州市泰顺县、宁波市慈溪市、玉树杂多县、襄阳市谷城县、遵义市绥阳县、张掖市山丹县、海北海晏县
直辖县天门市、红河弥勒市、西宁市湟中区、抚州市崇仁县、济南市钢城区、广西来宾市武宣县
西双版纳勐海县、内蒙古赤峰市宁城县、天津市东丽区、牡丹江市绥芬河市、内蒙古包头市土默特右旗
楚雄牟定县、佳木斯市富锦市、商洛市丹凤县、定西市临洮县、宜春市万载县、聊城市东昌府区、安庆市桐城市、长沙市望城区、凉山冕宁县
赣州市寻乌县、遵义市余庆县、江门市蓬江区、深圳市盐田区、苏州市常熟市、大同市平城区、宜昌市长阳土家族自治县、锦州市古塔区、文昌市东郊镇
酒泉市玉门市、东莞市寮步镇、葫芦岛市南票区、长沙市天心区、广西柳州市鱼峰区、黄冈市英山县、绥化市海伦市、东莞市石碣镇、本溪市明山区
杭州市临安区、怀化市麻阳苗族自治县、江门市开平市、阜阳市界首市、凉山西昌市、保山市腾冲市、蚌埠市五河县
武汉市武昌区、大兴安岭地区漠河市、西安市阎良区、厦门市翔安区、普洱市景谷傣族彝族自治县、随州市曾都区、菏泽市东明县
昭通市水富市、忻州市偏关县、普洱市墨江哈尼族自治县、延安市宝塔区、锦州市凌河区、嘉兴市桐乡市、广元市旺苍县、临夏和政县、菏泽市定陶区
济南市天桥区、阜新市海州区、汉中市留坝县、上饶市广信区、铁岭市银州区、东莞市麻涌镇
辽阳市辽阳县、内蒙古鄂尔多斯市乌审旗、黔南长顺县、台州市临海市、重庆市江津区、三明市大田县、广西北海市合浦县、无锡市梁溪区、赣州市赣县区、湘潭市雨湖区
锦州市凌河区、徐州市沛县、贵阳市白云区、淮安市淮安区、永州市双牌县、岳阳市汨罗市、贵阳市息烽县
榆林市佳县、菏泽市曹县、汕头市潮阳区、果洛玛沁县、威海市环翠区、广西梧州市龙圩区、汉中市宁强县、东营市利津县、肇庆市广宁县
汉中市洋县、抚顺市新抚区、牡丹江市林口县、天水市秦州区、广西河池市巴马瑶族自治县、深圳市龙华区、上海市松江区
黔西南兴义市、六安市霍山县、毕节市赫章县、南昌市西湖区、徐州市铜山区、文昌市翁田镇、天津市蓟州区、潍坊市昌邑市、东莞市谢岗镇、南阳市卧龙区
遵义市仁怀市、文昌市东郊镇、商丘市虞城县、红河河口瑶族自治县、淮南市凤台县、潍坊市寒亭区、铜仁市德江县、东方市四更镇
内蒙古巴彦淖尔市乌拉特中旗、泉州市泉港区、安顺市普定县、广西贵港市港南区、渭南市临渭区、永州市宁远县、琼海市石壁镇、黑河市北安市
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】