400服务电话:400-1865-909(点击咨询)
博大光正太阳能售后维修电话(全市各区)24小时人工客服网点电话热线
博大光正太阳能400全国服务电话全国
博大光正太阳能售后电话400维修热线-24小时人工在线服务中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
博大光正太阳能售后服务务24小时服务热线电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
博大光正太阳能24h故障报修电话
博大光正太阳能全国服务网点一览
维修服务老客户专属优惠日,感恩回馈:设立老客户专属优惠日,为老客户提供更多优惠和福利,感恩回馈客户支持。
客户维修知识培训:为客户提供维修知识培训,提升客户自我解决问题的能力。
博大光正太阳能统一售后热线
博大光正太阳能维修服务电话全国服务区域:
齐齐哈尔市碾子山区、杭州市余杭区、乐山市井研县、黔南瓮安县、揭阳市惠来县、东方市八所镇、广西柳州市鱼峰区
六盘水市盘州市、日照市莒县、黄山市祁门县、岳阳市湘阴县、抚州市崇仁县
安顺市平坝区、滨州市滨城区、南昌市西湖区、恩施州建始县、中山市五桂山街道
忻州市五台县、德州市庆云县、凉山越西县、忻州市原平市、宝鸡市金台区、大理大理市、玉树囊谦县、绵阳市涪城区、宿迁市泗阳县、丽水市缙云县
许昌市鄢陵县、晋中市平遥县、遵义市凤冈县、泉州市泉港区、吉林市桦甸市、咸阳市泾阳县、深圳市坪山区、长春市宽城区
泉州市惠安县、毕节市金沙县、南平市顺昌县、深圳市福田区、普洱市景东彝族自治县
中山市小榄镇、文山广南县、广西河池市凤山县、云浮市罗定市、文山麻栗坡县、濮阳市台前县、聊城市东昌府区、广西北海市合浦县
榆林市榆阳区、泰州市姜堰区、内蒙古呼伦贝尔市额尔古纳市、惠州市惠阳区、临高县博厚镇、乐山市马边彝族自治县、陇南市礼县、宁波市江北区
昆明市官渡区、株洲市芦淞区、重庆市荣昌区、襄阳市南漳县、济南市槐荫区、大兴安岭地区松岭区、定西市渭源县、定安县翰林镇
沈阳市于洪区、铜仁市印江县、鞍山市铁西区、黔东南剑河县、东莞市企石镇
通化市辉南县、宁夏中卫市中宁县、长沙市芙蓉区、红河泸西县、广西来宾市忻城县、绍兴市上虞区、孝感市大悟县、深圳市罗湖区
白沙黎族自治县青松乡、娄底市涟源市、中山市三角镇、新乡市获嘉县、营口市鲅鱼圈区、重庆市巫山县、阜新市新邱区
宝鸡市扶风县、甘孜巴塘县、济宁市汶上县、广元市利州区、温州市龙湾区、天水市秦州区、内蒙古乌兰察布市化德县、大庆市林甸县、德州市陵城区、北京市大兴区
赣州市上犹县、伊春市嘉荫县、保亭黎族苗族自治县保城镇、遂宁市大英县、驻马店市上蔡县、临夏东乡族自治县、绵阳市游仙区
绥化市肇东市、韶关市始兴县、连云港市灌南县、黔南平塘县、南平市松溪县、黄冈市英山县、甘南玛曲县、黄冈市麻城市、哈尔滨市巴彦县、怀化市中方县
临沂市临沭县、忻州市五寨县、凉山甘洛县、松原市扶余市、临沂市沂水县
汉中市略阳县、抚顺市顺城区、伊春市金林区、遵义市赤水市、日照市东港区
盐城市阜宁县、凉山德昌县、深圳市龙岗区、深圳市光明区、文山西畴县、大连市西岗区、吉安市安福县、内蒙古通辽市奈曼旗
巴中市南江县、韶关市新丰县、重庆市合川区、宝鸡市金台区、德宏傣族景颇族自治州梁河县、东莞市虎门镇、绍兴市柯桥区、亳州市蒙城县
安阳市滑县、苏州市相城区、孝感市云梦县、延安市黄龙县、内蒙古乌海市海南区、迪庆香格里拉市
九江市德安县、大连市庄河市、湘潭市湘潭县、本溪市南芬区、屯昌县新兴镇
宜春市樟树市、榆林市吴堡县、衡阳市耒阳市、广西崇左市大新县、广西河池市南丹县、台州市椒江区、内蒙古乌兰察布市化德县、营口市鲅鱼圈区、上海市黄浦区、鞍山市岫岩满族自治县
南京市栖霞区、长春市二道区、广西河池市凤山县、海东市化隆回族自治县、清远市清城区、定安县雷鸣镇、乐山市金口河区、阳江市江城区
成都市青白江区、赣州市全南县、邵阳市洞口县、清远市连山壮族瑶族自治县、南京市秦淮区、南阳市镇平县、鹤岗市向阳区、丹东市凤城市
内江市东兴区、抚州市临川区、湘西州龙山县、杭州市桐庐县、榆林市米脂县、周口市郸城县、临汾市侯马市、定安县龙湖镇、周口市川汇区
内蒙古乌兰察布市四子王旗、南京市秦淮区、滨州市博兴县、昭通市昭阳区、邵阳市邵东市、陵水黎族自治县光坡镇、伊春市伊美区、商洛市商南县、宁夏吴忠市青铜峡市
赣州市寻乌县、遵义市余庆县、江门市蓬江区、深圳市盐田区、苏州市常熟市、大同市平城区、宜昌市长阳土家族自治县、锦州市古塔区、文昌市东郊镇
400服务电话:400-1865-909(点击咨询)
博大光正太阳能全国客服售后维修电话24小时电话预约
博大光正太阳能24小时报修服务热线
博大光正太阳能全国24小时400故障报修客服中心:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
博大光正太阳能400全国售后客服电话人工服务400(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
博大光正太阳能全国各地售后服务电话
博大光正太阳能售后全国客服中心
服务团队在上门服务时,会主动为您检查其他相关产品的运行情况,提供建议。
维修师傅均具备良好的服务态度,让您感受到家的温暖。
博大光正太阳能全国人工售后全国24小时热线服务
博大光正太阳能维修服务电话全国服务区域:
大兴安岭地区加格达奇区、重庆市潼南区、天津市南开区、黄南同仁市、忻州市代县、沈阳市沈北新区
澄迈县仁兴镇、大庆市萨尔图区、琼海市博鳌镇、德宏傣族景颇族自治州陇川县、屯昌县西昌镇、大庆市龙凤区、南阳市桐柏县、楚雄大姚县、荆门市沙洋县
恩施州巴东县、白银市靖远县、宁夏石嘴山市大武口区、安顺市西秀区、宿州市灵璧县、烟台市龙口市、东莞市沙田镇、菏泽市牡丹区、渭南市白水县
铜川市王益区、十堰市竹山县、黔东南凯里市、吉林市昌邑区、丽水市松阳县、六安市舒城县、玉树玉树市、肇庆市封开县
陇南市宕昌县、保山市腾冲市、开封市杞县、洛阳市嵩县、天津市宝坻区、上海市长宁区、海南共和县、红河河口瑶族自治县、榆林市横山区、广西梧州市龙圩区
大同市天镇县、伊春市伊美区、菏泽市牡丹区、重庆市石柱土家族自治县、万宁市龙滚镇
焦作市马村区、景德镇市乐平市、丽水市云和县、济南市济阳区、赣州市于都县、新乡市红旗区、广西贵港市港南区
三门峡市渑池县、永州市江永县、赣州市兴国县、汉中市宁强县、天津市红桥区、东方市感城镇、内蒙古呼伦贝尔市陈巴尔虎旗、上海市青浦区、海东市乐都区
通化市通化县、陇南市康县、酒泉市敦煌市、乐东黎族自治县万冲镇、内蒙古包头市石拐区、内蒙古巴彦淖尔市磴口县、海南共和县、晋中市昔阳县、黄南尖扎县
黔西南贞丰县、泸州市叙永县、洛阳市嵩县、天水市秦安县、文山砚山县、定安县龙门镇、嘉峪关市文殊镇、忻州市繁峙县、清远市清新区
长治市长子县、晋中市昔阳县、深圳市宝安区、遂宁市船山区、武汉市青山区
宜春市靖安县、成都市邛崃市、邵阳市隆回县、十堰市竹山县、大理弥渡县、福州市连江县、邵阳市北塔区、南通市启东市、太原市万柏林区、清远市清新区
漳州市龙文区、巴中市南江县、上海市黄浦区、阜阳市颍东区、衡阳市衡南县、西双版纳勐海县、安康市宁陕县
宁夏银川市兴庆区、长治市襄垣县、安康市紫阳县、内蒙古兴安盟科尔沁右翼中旗、玉溪市通海县、资阳市安岳县、定安县翰林镇、文山丘北县
嘉兴市秀洲区、白银市靖远县、成都市新都区、上饶市广丰区、淄博市博山区、新乡市新乡县、荆州市江陵县
普洱市景东彝族自治县、宜宾市江安县、株洲市渌口区、广西桂林市象山区、吉林市昌邑区、文昌市昌洒镇、商丘市睢县、镇江市丹徒区、上海市崇明区、屯昌县南坤镇
玉树称多县、宁德市柘荣县、芜湖市弋江区、苏州市吴江区、德州市庆云县、吉安市新干县、渭南市白水县
西安市新城区、广西钦州市灵山县、儋州市新州镇、郑州市中牟县、驻马店市确山县、常德市澧县、嘉兴市海盐县、东莞市凤岗镇、新乡市原阳县
重庆市江北区、榆林市榆阳区、齐齐哈尔市铁锋区、阳泉市矿区、武汉市东西湖区、六安市叶集区、黄石市黄石港区、榆林市横山区、惠州市惠东县
长沙市宁乡市、广西北海市铁山港区、宜春市万载县、郑州市荥阳市、芜湖市湾沚区、南阳市宛城区、许昌市长葛市
辽源市东丰县、自贡市贡井区、许昌市禹州市、商洛市丹凤县、眉山市丹棱县、甘孜新龙县
鹤壁市山城区、庆阳市庆城县、儋州市中和镇、琼海市大路镇、抚顺市东洲区、湘潭市湘潭县
鹤岗市向阳区、襄阳市襄州区、榆林市横山区、文昌市翁田镇、景德镇市浮梁县、台州市三门县
太原市阳曲县、怀化市洪江市、大理剑川县、南阳市邓州市、烟台市福山区、铁岭市铁岭县、大同市平城区、白山市靖宇县
阜新市阜新蒙古族自治县、庆阳市镇原县、晋城市城区、肇庆市鼎湖区、茂名市信宜市、中山市黄圃镇、菏泽市牡丹区、张家界市永定区、滁州市天长市、普洱市宁洱哈尼族彝族自治县
五指山市番阳、玉溪市易门县、怀化市辰溪县、菏泽市牡丹区、平顶山市石龙区、温州市永嘉县、乐东黎族自治县九所镇
池州市青阳县、广西桂林市全州县、杭州市上城区、白沙黎族自治县南开乡、岳阳市云溪区、齐齐哈尔市建华区、潍坊市安丘市、大理剑川县、随州市随县、佛山市顺德区
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】