康佳(KONKA)冰箱24小时售后服务各区咨询电话
康佳(KONKA)冰箱7x24小时热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
康佳(KONKA)冰箱24小时厂家系统查询(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
康佳(KONKA)冰箱总部维修服务电话
康佳(KONKA)冰箱售后服务网点
在线故障排查,快速定位问题:我们提供在线故障排查服务,通过视频通话、图片上传等方式,帮助客户快速定位家电故障,提供初步解决方案。
康佳(KONKA)冰箱全国统一24小时客服热线
康佳(KONKA)冰箱客服报修
宁夏石嘴山市惠农区、牡丹江市林口县、濮阳市华龙区、黔西南安龙县、屯昌县屯城镇、清远市连山壮族瑶族自治县、广西梧州市苍梧县、萍乡市芦溪县、十堰市竹山县、广西百色市靖西市
忻州市忻府区、杭州市江干区、杭州市临安区、文山文山市、鹰潭市余江区
广西贺州市富川瑶族自治县、甘孜道孚县、铁岭市西丰县、临汾市安泽县、绵阳市游仙区、洛阳市洛龙区、驻马店市驿城区
定安县富文镇、武汉市江岸区、武汉市青山区、苏州市昆山市、开封市尉氏县、徐州市睢宁县、黄冈市黄梅县、通化市柳河县
临夏广河县、太原市晋源区、中山市坦洲镇、湘西州永顺县、深圳市宝安区、平顶山市叶县、平凉市华亭县、上海市金山区、咸阳市永寿县、忻州市繁峙县
云浮市罗定市、内蒙古锡林郭勒盟锡林浩特市、定安县龙门镇、万宁市大茂镇、鹤壁市淇滨区、绥化市兰西县、武汉市洪山区
阳泉市盂县、福州市连江县、九江市湖口县、吉林市丰满区、内蒙古包头市白云鄂博矿区、合肥市巢湖市、渭南市华阴市、长春市宽城区、长沙市天心区、鞍山市千山区
韶关市乐昌市、商丘市睢县、凉山西昌市、东莞市长安镇、威海市荣成市、西安市临潼区
娄底市冷水江市、娄底市新化县、南京市鼓楼区、哈尔滨市双城区、绵阳市游仙区、汉中市佛坪县、朝阳市双塔区
营口市鲅鱼圈区、晋中市平遥县、陵水黎族自治县隆广镇、广西桂林市全州县、郑州市荥阳市
甘南玛曲县、玉溪市通海县、湘西州吉首市、襄阳市襄州区、安康市汉阴县
锦州市古塔区、上海市虹口区、深圳市坪山区、白城市洮南市、昆明市呈贡区、吉安市庐陵新区、宣城市旌德县、三明市永安市、河源市源城区
文山富宁县、阜新市海州区、武汉市汉南区、上海市长宁区、长治市长子县
衡阳市雁峰区、亳州市蒙城县、河源市连平县、襄阳市樊城区、日照市东港区、齐齐哈尔市碾子山区、中山市黄圃镇、淄博市高青县、长沙市浏阳市
扬州市宝应县、深圳市盐田区、绥化市青冈县、泸州市古蔺县、绍兴市新昌县
六安市舒城县、绵阳市北川羌族自治县、徐州市云龙区、内蒙古包头市固阳县、合肥市包河区、临高县临城镇
巴中市通江县、济南市章丘区、文山富宁县、西宁市大通回族土族自治县、张掖市民乐县
中新网北京9月2日电(记者 吴涛)当人工智能的浪潮席卷全球,其背后的“燃料”——数据,正成为竞相争夺的战略资源。然而,并非所有数据都能加速AI的发展。一场从“海量数据”向“高质量数据集”的变革正在发生。
何为高质量数据集?
2024年12月,国家发展改革委、国家数据局等部门印发《关于促进数据产业高质量发展的指导意见》,首次明确提出“高质量数据集”概念,支持企业面向人工智能应用创新,开发高质量数据集,大力发展“数据即服务”“知识即服务”“模型即服务”等新业态。
近日发布的《高质量数据集建设指引》指出,大模型参数规模指数级增长与多模态能力的拓展,数据需求从“量级积累”转向“量质并重”。
官方数据显示,截至2025年6月,全国建设高质量数据集超3.5万个、总量超400PB;数据交易机构挂牌高质量数据集3364个,作为交易流通中的关键商品,累计交易额近40亿元,规模达246PB。
在近日举行的一场论坛上,中国信息通信研究院院长余晓晖表示,放眼全球,有大量的私域数据,在场景、行业、政府中,这部分数据能够释放出来,是构成高质量数据集非常重要的一个方向。
高质量数据集和AI发展相辅相成
因为AI大模型的训练会用到海量数据,所以,市场一直有观点认为,未来将无数据可用,或者不得不用大量的合成数据。在这种情况下,高质量数据集无疑成为数据流通的“硬通货”。
清华大学数字政府与治理研究院院长、教授张小劲表示,人工智能大模型走到哪里,高质量数据集就走到哪里,反之,高质量数据集走到哪里,人工智能就走到哪里,这是相辅相成的,是双轮驱动的格局。
中国工程院院士吴世忠指出,数据集建设的质量和安全,是大模型发展的生命线,要完善分级分类的数据安全制度,强化全流程的技术防护手段,筑牢防篡改的底层技术能力。在数据集建设中,还要主动融入中华优秀传统文化,避免模型成为利己主义的工具。
目前高质量数据集建设如火如荼,深圳市政务服务和数据管理局党组书记、局长周剑明在国家数据局官网发文分享,深圳市结合公共数据资源授权运营和可信数据空间建设探索,支持高质量公共数据和企业数据等融合应用,已在征信金融、气象、商保理赔等领域开展试点,取得较好成效。(完) 【编辑:于晓】