400服务电话:400-1865-909(点击咨询)
澜墨指纹锁维修电话24小时人工服务
澜墨指纹锁官方维修网点
澜墨指纹锁24小时在线客服:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
澜墨指纹锁售后服务维修网点中心-24小时售后服务电话号码(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
澜墨指纹锁各区服务24小时受理中心电话
澜墨指纹锁总部400售后维修电话24小时服务热线
线上线下均可预约服务,操作便捷,一键预约,轻松搞定。
客户反馈激励机制,鼓励真实评价:我们设立客户反馈激励机制,鼓励客户提供真实、有价值的评价和建议,帮助我们不断改进服务。
澜墨指纹锁24小时售后电话维修附近电话
澜墨指纹锁维修服务电话全国服务区域:
恩施州利川市、宁夏银川市西夏区、内蒙古赤峰市巴林左旗、北京市朝阳区、赣州市瑞金市、贵阳市乌当区、佛山市三水区、福州市晋安区、周口市鹿邑县
汉中市佛坪县、焦作市武陟县、琼海市阳江镇、广西桂林市雁山区、益阳市桃江县、德宏傣族景颇族自治州瑞丽市、安庆市大观区、宁夏固原市彭阳县、福州市闽侯县
潍坊市坊子区、福州市仓山区、甘南碌曲县、广安市邻水县、陇南市文县、甘南合作市、韶关市仁化县
内蒙古乌兰察布市四子王旗、宜春市靖安县、嘉兴市海宁市、佛山市顺德区、郴州市永兴县、福州市罗源县、商洛市丹凤县、深圳市罗湖区、文山丘北县
天津市西青区、威海市文登区、内蒙古赤峰市林西县、江门市台山市、武汉市江夏区、聊城市东昌府区
滁州市南谯区、阜新市太平区、黄山市歙县、咸阳市旬邑县、凉山甘洛县
临汾市古县、运城市万荣县、衡阳市衡南县、盐城市响水县、临沂市平邑县、白沙黎族自治县南开乡、酒泉市瓜州县、淄博市淄川区、宝鸡市麟游县
无锡市滨湖区、阜新市太平区、临汾市永和县、安阳市安阳县、遂宁市安居区、邵阳市北塔区、盐城市大丰区
遵义市绥阳县、永州市道县、大庆市林甸县、衢州市衢江区、东方市板桥镇
延安市宜川县、苏州市相城区、萍乡市安源区、儋州市雅星镇、陇南市武都区、北京市朝阳区、襄阳市襄州区、娄底市冷水江市、宿迁市宿豫区、萍乡市湘东区
岳阳市君山区、泰安市岱岳区、忻州市五台县、湘西州凤凰县、白沙黎族自治县邦溪镇
黄冈市英山县、平凉市庄浪县、枣庄市市中区、广西梧州市苍梧县、濮阳市台前县、台州市路桥区、东莞市大朗镇、忻州市五寨县、黔东南黎平县、双鸭山市岭东区
长春市南关区、新乡市卫辉市、昆明市五华区、本溪市本溪满族自治县、台州市临海市
玉溪市红塔区、洛阳市栾川县、内蒙古包头市固阳县、郑州市二七区、上海市嘉定区、开封市龙亭区、重庆市酉阳县、朔州市平鲁区、洛阳市瀍河回族区、临高县调楼镇
吕梁市交口县、景德镇市昌江区、绍兴市新昌县、牡丹江市阳明区、中山市南区街道、西安市未央区、芜湖市繁昌区、文昌市潭牛镇、广西来宾市象州县、盐城市东台市
成都市大邑县、广西百色市凌云县、昆明市石林彝族自治县、徐州市泉山区、广安市岳池县
洛阳市洛龙区、中山市板芙镇、邵阳市城步苗族自治县、朔州市平鲁区、吕梁市石楼县、楚雄永仁县、乐东黎族自治县利国镇、广西柳州市融安县
黔南瓮安县、芜湖市弋江区、文山丘北县、赣州市石城县、屯昌县新兴镇
湛江市吴川市、韶关市仁化县、晋中市平遥县、宿迁市沭阳县、常德市武陵区、驻马店市泌阳县、成都市青羊区、肇庆市封开县
黔南罗甸县、濮阳市台前县、常州市金坛区、内蒙古包头市东河区、黔西南贞丰县、济南市长清区、牡丹江市海林市
绵阳市北川羌族自治县、江门市蓬江区、绥化市北林区、宝鸡市陇县、重庆市荣昌区、曲靖市麒麟区
遂宁市蓬溪县、文昌市翁田镇、南平市建瓯市、广西梧州市长洲区、陵水黎族自治县光坡镇
海西蒙古族格尔木市、巴中市平昌县、江门市开平市、潍坊市高密市、上海市浦东新区、榆林市横山区、徐州市云龙区
酒泉市金塔县、临沂市费县、南通市海安市、阜阳市临泉县、自贡市荣县、泉州市惠安县、株洲市天元区、上海市长宁区
大连市甘井子区、芜湖市繁昌区、广西防城港市上思县、黔南独山县、威海市文登区
鹰潭市余江区、广西百色市田东县、株洲市荷塘区、内蒙古锡林郭勒盟镶黄旗、黄石市下陆区、上海市静安区、内蒙古呼和浩特市回民区、昆明市安宁市、广西桂林市资源县、兰州市七里河区
宁波市镇海区、大同市云冈区、广州市增城区、邵阳市绥宁县、遵义市湄潭县
400服务电话:400-1865-909(点击咨询)
澜墨指纹锁全国400报修客服网点
澜墨指纹锁售后服务全国统一客服中心电话
澜墨指纹锁400客服售后服务电话热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
澜墨指纹锁维修电话上门附近电话号码今日客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
澜墨指纹锁售后电话24小时维修热线
澜墨指纹锁全国统一400客服号码
维修配件质保期延长政策:我们制定了详细的维修配件质保期延长政策,客户可以根据自己的需求选择延长质保期限。
维修服务社区公益活动,回馈社会:积极参与社区公益活动,如免费维修日、家电安全知识讲座等,回馈社会,提升品牌形象。
澜墨指纹锁维修服务24小时在线
澜墨指纹锁维修服务电话全国服务区域:
宁波市鄞州区、重庆市城口县、黔东南剑河县、吉安市青原区、襄阳市襄州区、玉溪市红塔区、营口市站前区、太原市杏花岭区、梅州市大埔县、万宁市南桥镇
榆林市米脂县、延安市延长县、南充市西充县、渭南市韩城市、大理宾川县
临沧市镇康县、阜新市细河区、万宁市和乐镇、萍乡市芦溪县、黄石市下陆区、汉中市西乡县、绥化市兰西县、内蒙古阿拉善盟阿拉善左旗、长春市南关区、常州市武进区
平顶山市郏县、益阳市安化县、昆明市寻甸回族彝族自治县、白沙黎族自治县南开乡、泸州市泸县、天水市甘谷县、南平市建瓯市、镇江市丹徒区、广西北海市铁山港区
西安市莲湖区、滨州市无棣县、临沂市沂水县、荆门市沙洋县、孝感市孝南区、通化市梅河口市、重庆市大足区、广西桂林市资源县、宜春市万载县
内蒙古乌兰察布市集宁区、濮阳市华龙区、泉州市石狮市、宁波市北仑区、曲靖市麒麟区、马鞍山市博望区、定安县黄竹镇、锦州市古塔区、红河弥勒市
巴中市通江县、济南市章丘区、文山富宁县、西宁市大通回族土族自治县、张掖市民乐县
东莞市寮步镇、内蒙古锡林郭勒盟镶黄旗、南充市阆中市、昭通市镇雄县、楚雄大姚县、铜仁市万山区、广西来宾市象州县、湘潭市韶山市
甘孜白玉县、大理鹤庆县、济南市莱芜区、宜昌市秭归县、齐齐哈尔市拜泉县、景德镇市昌江区、成都市双流区、泉州市南安市
亳州市利辛县、益阳市桃江县、吕梁市交城县、成都市郫都区、抚州市广昌县
文昌市会文镇、徐州市鼓楼区、广西南宁市西乡塘区、广西来宾市象州县、牡丹江市阳明区、滨州市邹平市、湘潭市雨湖区、泸州市古蔺县、重庆市黔江区
凉山布拖县、内蒙古乌海市海勃湾区、泉州市南安市、十堰市丹江口市、上海市青浦区、临沂市临沭县
郴州市汝城县、阿坝藏族羌族自治州壤塘县、陵水黎族自治县文罗镇、保山市隆阳区、西安市长安区、鸡西市鸡东县、广西柳州市鹿寨县
乐山市犍为县、内蒙古乌兰察布市卓资县、黔南龙里县、武威市民勤县、福州市福清市
内蒙古呼和浩特市清水河县、眉山市仁寿县、广西桂林市平乐县、内蒙古呼和浩特市和林格尔县、铜川市耀州区、温州市瑞安市、湛江市遂溪县、三沙市西沙区、广安市邻水县、宁波市鄞州区
安阳市滑县、濮阳市范县、烟台市莱阳市、辽源市东辽县、新乡市封丘县
广西百色市田林县、张家界市武陵源区、韶关市翁源县、贵阳市白云区、迪庆维西傈僳族自治县、广西梧州市龙圩区、儋州市大成镇、白银市靖远县、昆明市禄劝彝族苗族自治县、临汾市永和县
文昌市东郊镇、抚州市金溪县、枣庄市峄城区、大庆市肇州县、广西柳州市鱼峰区、内蒙古阿拉善盟阿拉善左旗、德州市武城县
嘉峪关市峪泉镇、安康市紫阳县、广西百色市田阳区、北京市怀柔区、宁夏吴忠市红寺堡区、池州市石台县、临沂市莒南县、昆明市富民县、三沙市南沙区
阳泉市城区、十堰市茅箭区、朝阳市北票市、襄阳市樊城区、海北祁连县、万宁市三更罗镇、铜仁市印江县
陵水黎族自治县隆广镇、广西桂林市叠彩区、阳泉市矿区、南京市秦淮区、焦作市孟州市、临沂市沂南县、茂名市信宜市、内蒙古巴彦淖尔市五原县、万宁市北大镇
广西来宾市金秀瑶族自治县、合肥市巢湖市、深圳市坪山区、大理南涧彝族自治县、泉州市金门县、临汾市浮山县、内蒙古鄂尔多斯市达拉特旗、聊城市东昌府区
宜昌市西陵区、鞍山市海城市、广西梧州市藤县、泰安市东平县、铜川市宜君县、晋中市榆社县、广西玉林市福绵区
榆林市子洲县、深圳市龙华区、临沧市永德县、合肥市肥东县、锦州市古塔区、辽阳市太子河区、黄石市下陆区
营口市大石桥市、毕节市赫章县、南阳市方城县、黔东南天柱县、娄底市新化县、三门峡市义马市、九江市瑞昌市、济宁市曲阜市、张掖市甘州区
汉中市留坝县、儋州市木棠镇、伊春市大箐山县、临汾市吉县、白沙黎族自治县青松乡、天津市南开区、重庆市云阳县、济宁市梁山县、延安市宝塔区
邵阳市新宁县、安庆市怀宁县、烟台市福山区、九江市湖口县、连云港市赣榆区、宝鸡市眉县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】