全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

恒维智能锁客户关怀热线

发布时间:
恒维智能锁总部客服热线







恒维智能锁客户关怀热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









恒维智能锁客服网点分布(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





恒维智能锁全国人工售后各点客服全国电话热线

恒维智能锁快速响应服务中心









配件真伪验证:提供配件真伪验证服务,确保您使用的是正品配件。




恒维智能锁全国统一服务热线24小时维修









恒维智能锁维修上门维修附近全国

 文山马关县、南通市启东市、昌江黎族自治县乌烈镇、陵水黎族自治县隆广镇、黔南龙里县、南阳市西峡县





宁德市福鼎市、海口市琼山区、德宏傣族景颇族自治州陇川县、天水市甘谷县、襄阳市樊城区、宁夏银川市贺兰县、大庆市肇源县、镇江市扬中市、万宁市万城镇、大同市阳高县









葫芦岛市建昌县、内蒙古通辽市开鲁县、西双版纳景洪市、绥化市望奎县、三明市沙县区、辽源市东辽县、湘西州永顺县、上海市徐汇区、东莞市樟木头镇









清远市连州市、内蒙古通辽市科尔沁左翼中旗、长治市上党区、吉安市新干县、连云港市赣榆区、马鞍山市花山区、琼海市塔洋镇、重庆市南川区、宁夏石嘴山市平罗县、广西防城港市港口区









合肥市庐阳区、焦作市博爱县、文山马关县、广西崇左市天等县、内蒙古通辽市开鲁县、泉州市金门县、云浮市郁南县









甘孜炉霍县、九江市瑞昌市、商丘市宁陵县、曲靖市富源县、昭通市威信县、亳州市涡阳县、周口市太康县、漳州市龙文区、哈尔滨市香坊区









内蒙古呼伦贝尔市牙克石市、广西防城港市上思县、晋中市太谷区、儋州市中和镇、澄迈县老城镇、肇庆市德庆县、驻马店市新蔡县、绵阳市盐亭县、儋州市东成镇、萍乡市上栗县









徐州市鼓楼区、海西蒙古族乌兰县、红河开远市、运城市绛县、重庆市云阳县、辽阳市白塔区、吉林市昌邑区、昆明市盘龙区、六安市叶集区









合肥市瑶海区、韶关市武江区、佳木斯市富锦市、蚌埠市怀远县、长沙市长沙县









鸡西市密山市、宜昌市宜都市、泰州市高港区、内蒙古赤峰市克什克腾旗、德州市平原县









金华市金东区、广西玉林市玉州区、鞍山市千山区、济南市长清区、澄迈县大丰镇、宁波市鄞州区、攀枝花市仁和区、昭通市昭阳区、杭州市桐庐县、成都市龙泉驿区









永州市冷水滩区、玉溪市华宁县、韶关市仁化县、大连市西岗区、重庆市南岸区、宿州市萧县、商洛市镇安县、上饶市弋阳县、濮阳市范县、河源市和平县









澄迈县金江镇、哈尔滨市南岗区、吕梁市孝义市、广西崇左市龙州县、牡丹江市海林市、黔东南麻江县、潍坊市寒亭区、内蒙古乌兰察布市兴和县









黄石市大冶市、无锡市惠山区、梅州市平远县、龙岩市新罗区、天津市蓟州区、长沙市望城区、贵阳市清镇市、清远市连南瑶族自治县









长春市朝阳区、内蒙古锡林郭勒盟二连浩特市、重庆市丰都县、绍兴市柯桥区、宣城市绩溪县、红河个旧市、日照市五莲县









海西蒙古族茫崖市、毕节市纳雍县、烟台市龙口市、白沙黎族自治县牙叉镇、宁夏固原市原州区、黔南福泉市、咸阳市礼泉县、芜湖市镜湖区、金华市永康市、临沧市凤庆县









辽阳市文圣区、东莞市桥头镇、凉山盐源县、广西崇左市大新县、宜宾市筠连县、贵阳市花溪区、南阳市新野县、池州市东至县、厦门市集美区

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文