索菲亚防盗门400全国售后维修全国报修
索菲亚防盗门维修24小时售后服务电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
索菲亚防盗门24小时全国统一400售后电话客服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
索菲亚防盗门全国客服咨询热线
索菲亚防盗门客服热线汇总
客户见证,信誉保证:我们拥有众多满意的客户见证,他们的好评是我们信誉的保证,也是您选择我们的信心来源。
索菲亚防盗门全国24小时售后客服电话
索菲亚防盗门售后维修电话|全国统一客户400专线
南京市江宁区、内蒙古锡林郭勒盟苏尼特右旗、中山市石岐街道、聊城市东昌府区、上海市黄浦区、白银市平川区、商丘市柘城县、儋州市海头镇、忻州市静乐县
东莞市石龙镇、牡丹江市东安区、青岛市市南区、汕头市潮南区、绍兴市越城区、广安市邻水县、齐齐哈尔市富裕县
广安市岳池县、三门峡市湖滨区、六安市霍山县、恩施州咸丰县、达州市开江县
泉州市金门县、重庆市北碚区、郴州市桂阳县、自贡市荣县、天水市张家川回族自治县、兰州市红古区、定安县翰林镇、广西桂林市叠彩区、泉州市石狮市
荆州市监利市、牡丹江市绥芬河市、阿坝藏族羌族自治州黑水县、绍兴市诸暨市、揭阳市榕城区、许昌市魏都区
台州市路桥区、广西柳州市柳北区、广西贵港市平南县、临高县皇桐镇、南昌市青云谱区、荆门市沙洋县、白城市洮北区、松原市宁江区、白银市平川区
东莞市大岭山镇、驻马店市确山县、儋州市海头镇、天津市和平区、白城市镇赉县、洛阳市偃师区、徐州市睢宁县、广西玉林市福绵区、临夏东乡族自治县、南阳市西峡县
永州市蓝山县、合肥市巢湖市、内蒙古锡林郭勒盟阿巴嘎旗、阜阳市太和县、湘潭市岳塘区、台州市临海市、吉林市丰满区、楚雄大姚县、伊春市乌翠区、宿州市灵璧县
六盘水市钟山区、郴州市宜章县、文昌市文教镇、达州市通川区、永州市零陵区
咸宁市嘉鱼县、红河金平苗族瑶族傣族自治县、葫芦岛市兴城市、甘孜炉霍县、镇江市扬中市
吕梁市临县、郴州市安仁县、南平市松溪县、抚顺市望花区、成都市青白江区、巴中市南江县、广西河池市金城江区、杭州市滨江区、镇江市丹阳市
达州市渠县、文昌市锦山镇、上海市青浦区、吉林市船营区、双鸭山市四方台区、六安市霍山县、中山市东升镇、济南市市中区
赣州市宁都县、咸阳市秦都区、佛山市禅城区、岳阳市君山区、合肥市瑶海区
晋中市左权县、太原市杏花岭区、周口市鹿邑县、荆州市洪湖市、杭州市上城区、营口市老边区、商洛市洛南县、酒泉市敦煌市、南京市溧水区
泉州市石狮市、淮安市盱眙县、镇江市京口区、驻马店市平舆县、成都市新都区
内蒙古锡林郭勒盟正蓝旗、楚雄永仁县、洛阳市偃师区、铜陵市郊区、苏州市虎丘区、宝鸡市陈仓区、三明市将乐县、蚌埠市蚌山区、濮阳市台前县
焦作市马村区、景德镇市乐平市、丽水市云和县、济南市济阳区、赣州市于都县、新乡市红旗区、广西贵港市港南区
中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。
北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。
论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。
DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。
在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。
《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。
DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】