400服务电话:400-1865-909(点击咨询)
全能保险箱客服热线全国覆盖
全能保险箱统一客服平台
全能保险箱售后维修电话24小时服务全市网点:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
全能保险箱快速响应专线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
全能保险箱维修售后中心热线
全能保险箱全国统一客服热线号码
数据保护,隐私安全:我们严格遵守数据保护法规,确保您的个人信息和维修数据得到妥善保护,让您在享受服务的同时,无需担心隐私泄露问题。
维修服务维修后效果评估,确保满意:维修完成后,对维修效果进行评估,确保客户对维修结果满意,若不满意将及时采取补救措施。
全能保险箱全市各区24小时报修电话
全能保险箱维修服务电话全国服务区域:
运城市闻喜县、绍兴市上虞区、青岛市崂山区、茂名市茂南区、内蒙古巴彦淖尔市乌拉特中旗、汕头市潮南区
酒泉市玉门市、镇江市丹阳市、广西崇左市凭祥市、杭州市淳安县、内江市资中县、丽水市遂昌县、淮北市相山区、泸州市江阳区
南充市营山县、常德市桃源县、东莞市企石镇、广西南宁市隆安县、赣州市南康区、宁波市奉化区、五指山市毛道、北京市房山区、株洲市渌口区、白沙黎族自治县七坊镇
阳江市阳东区、四平市伊通满族自治县、湘潭市岳塘区、内蒙古鄂尔多斯市鄂托克前旗、大同市广灵县、新乡市原阳县、沈阳市沈北新区、朝阳市双塔区、九江市濂溪区、广西河池市宜州区
金华市浦江县、镇江市句容市、汕头市濠江区、普洱市景东彝族自治县、张掖市甘州区、张掖市肃南裕固族自治县、河源市龙川县、成都市邛崃市
昆明市官渡区、株洲市芦淞区、重庆市荣昌区、襄阳市南漳县、济南市槐荫区、大兴安岭地区松岭区、定西市渭源县、定安县翰林镇
内蒙古巴彦淖尔市乌拉特前旗、昆明市禄劝彝族苗族自治县、海东市民和回族土族自治县、海南共和县、茂名市高州市、文昌市潭牛镇
马鞍山市含山县、贵阳市息烽县、昌江黎族自治县石碌镇、甘南碌曲县、淮南市八公山区、吉安市峡江县
新乡市新乡县、肇庆市四会市、重庆市彭水苗族土家族自治县、吉安市万安县、长沙市长沙县、随州市随县、德阳市广汉市、盘锦市兴隆台区、茂名市信宜市
绍兴市新昌县、抚顺市新宾满族自治县、重庆市九龙坡区、西宁市湟源县、丹东市振安区、鄂州市华容区、上海市闵行区、咸宁市崇阳县、内蒙古巴彦淖尔市磴口县、宁夏中卫市沙坡头区
安庆市怀宁县、吕梁市离石区、宁夏银川市贺兰县、临汾市吉县、广西北海市银海区
益阳市桃江县、六安市金安区、甘孜德格县、文山富宁县、安顺市普定县
烟台市福山区、保山市昌宁县、铜仁市碧江区、牡丹江市林口县、聊城市茌平区、临沂市平邑县、菏泽市巨野县
大连市普兰店区、忻州市定襄县、丹东市振兴区、兰州市七里河区、武汉市东西湖区
咸阳市旬邑县、黄石市西塞山区、通化市集安市、日照市莒县、昭通市彝良县、文昌市东路镇、汉中市略阳县、哈尔滨市道里区、宜春市高安市、广西柳州市鱼峰区
陵水黎族自治县隆广镇、武汉市江夏区、南阳市新野县、海南兴海县、广西贺州市富川瑶族自治县、荆州市江陵县、黄冈市黄梅县
直辖县天门市、红河弥勒市、西宁市湟中区、抚州市崇仁县、济南市钢城区、广西来宾市武宣县
齐齐哈尔市碾子山区、杭州市余杭区、乐山市井研县、黔南瓮安县、揭阳市惠来县、东方市八所镇、广西柳州市鱼峰区
孝感市大悟县、荆门市钟祥市、广西河池市巴马瑶族自治县、吉安市峡江县、龙岩市新罗区、贵阳市息烽县
菏泽市巨野县、清远市清城区、内蒙古乌兰察布市丰镇市、临夏临夏县、哈尔滨市双城区
渭南市临渭区、安庆市岳西县、潍坊市安丘市、雅安市汉源县、内蒙古兴安盟阿尔山市、张掖市高台县
广西桂林市灵川县、荆州市江陵县、陇南市徽县、铜陵市铜官区、泉州市丰泽区、阜新市阜新蒙古族自治县、汕头市潮南区、安康市岚皋县
西安市高陵区、内蒙古呼和浩特市和林格尔县、儋州市新州镇、白山市浑江区、郑州市惠济区、汕头市潮南区、吉安市新干县、铜仁市松桃苗族自治县、平顶山市宝丰县、万宁市东澳镇
常德市津市市、遵义市赤水市、黄冈市团风县、铁岭市银州区、珠海市香洲区、惠州市惠阳区、内蒙古乌兰察布市卓资县
三明市永安市、陵水黎族自治县本号镇、双鸭山市宝山区、平顶山市新华区、遵义市凤冈县、怀化市鹤城区、汕尾市陆河县
遵义市仁怀市、泰州市姜堰区、海北海晏县、淮安市洪泽区、南充市西充县、绵阳市平武县
黄冈市黄州区、吕梁市交城县、昭通市巧家县、榆林市佳县、辽阳市太子河区、中山市古镇镇、楚雄双柏县
400服务电话:400-1865-909(点击咨询)
全能保险箱技服务热线
全能保险箱售后上门服务联系方式
全能保险箱全国统一各市售后服务维修电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
全能保险箱客服联系电话(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)
全能保险箱总部400售后客服服务网点电话
全能保险箱24小时贴心服务
针对学生客户群体,提供寒暑假优惠维修服务。
紧急故障快速响应小组,应对突发状况:我们设立紧急故障快速响应小组,专门处理突发故障和紧急情况,确保在第一时间赶到现场,为客户解决问题。
全能保险箱全国客服售后维修电话24小时400热线
全能保险箱维修服务电话全国服务区域:
毕节市纳雍县、临汾市安泽县、达州市通川区、西宁市城中区、龙岩市新罗区、牡丹江市阳明区、广西崇左市大新县
广西柳州市鱼峰区、青岛市莱西市、周口市项城市、重庆市巫溪县、广安市华蓥市
内蒙古呼伦贝尔市牙克石市、安阳市文峰区、广西河池市都安瑶族自治县、南通市启东市、赣州市兴国县、广西百色市那坡县
河源市源城区、黔东南施秉县、萍乡市芦溪县、宝鸡市渭滨区、内蒙古锡林郭勒盟多伦县、莆田市仙游县、南充市南部县
成都市青白江区、赣州市全南县、邵阳市洞口县、清远市连山壮族瑶族自治县、南京市秦淮区、南阳市镇平县、鹤岗市向阳区、丹东市凤城市
宁夏吴忠市青铜峡市、九江市共青城市、延安市志丹县、宿州市灵璧县、榆林市米脂县
海东市乐都区、贵阳市息烽县、郑州市登封市、池州市东至县、天水市甘谷县、淄博市沂源县
沈阳市辽中区、广西河池市大化瑶族自治县、中山市古镇镇、朝阳市龙城区、巴中市平昌县、广西防城港市东兴市、菏泽市单县、东莞市石排镇
长治市沁源县、泉州市石狮市、临沂市平邑县、咸阳市杨陵区、阜新市清河门区、临沧市临翔区
广西玉林市陆川县、广西来宾市象州县、天水市秦州区、海北祁连县、定安县定城镇、临沂市蒙阴县
丽水市青田县、潍坊市安丘市、文山文山市、内蒙古锡林郭勒盟太仆寺旗、南京市玄武区、泸州市江阳区、黔东南剑河县、上饶市铅山县、广州市花都区、青岛市胶州市
定西市安定区、内蒙古兴安盟扎赉特旗、甘孜得荣县、广西梧州市藤县、上海市松江区
陵水黎族自治县光坡镇、天津市蓟州区、德阳市什邡市、无锡市新吴区、孝感市孝南区、安庆市桐城市、牡丹江市爱民区、广西南宁市宾阳县、商洛市商南县
新乡市长垣市、东莞市常平镇、中山市大涌镇、重庆市渝北区、滁州市凤阳县、淮北市濉溪县、恩施州咸丰县
新乡市凤泉区、阜新市新邱区、芜湖市无为市、哈尔滨市香坊区、广西桂林市临桂区、通化市集安市、临沂市郯城县、惠州市龙门县、三门峡市灵宝市
迪庆维西傈僳族自治县、杭州市滨江区、吉安市永新县、鸡西市虎林市、济宁市嘉祥县、兰州市榆中县
抚州市乐安县、临汾市侯马市、甘孜乡城县、长治市黎城县、吕梁市柳林县、焦作市孟州市、海东市循化撒拉族自治县、晋城市高平市、内蒙古鄂尔多斯市伊金霍洛旗、忻州市代县
江门市开平市、安康市旬阳市、广西河池市大化瑶族自治县、内蒙古通辽市奈曼旗、赣州市寻乌县、张家界市武陵源区、郑州市上街区、茂名市电白区、内蒙古乌兰察布市卓资县
韶关市武江区、文昌市龙楼镇、惠州市龙门县、邵阳市双清区、绥化市绥棱县
宿迁市沭阳县、荆州市江陵县、平凉市灵台县、宝鸡市千阳县、周口市川汇区、北京市平谷区、武汉市新洲区、西安市鄠邑区、广西来宾市象州县
普洱市西盟佤族自治县、哈尔滨市香坊区、商洛市丹凤县、龙岩市连城县、晋城市陵川县、娄底市双峰县、宜昌市五峰土家族自治县、晋中市榆社县
洛阳市孟津区、绵阳市北川羌族自治县、内蒙古赤峰市林西县、亳州市利辛县、儋州市南丰镇、哈尔滨市方正县、安庆市大观区
周口市太康县、龙岩市新罗区、岳阳市临湘市、成都市武侯区、琼海市石壁镇、广元市昭化区、双鸭山市饶河县、阿坝藏族羌族自治州金川县、东莞市樟木头镇、郑州市登封市
马鞍山市当涂县、广西崇左市龙州县、晋城市陵川县、齐齐哈尔市泰来县、黄冈市武穴市、昆明市官渡区、三沙市南沙区、毕节市金沙县
乐东黎族自治县尖峰镇、本溪市南芬区、玉树玉树市、温州市泰顺县、重庆市黔江区、蚌埠市怀远县
白沙黎族自治县七坊镇、赣州市南康区、铜仁市印江县、连云港市赣榆区、梅州市梅县区、抚顺市望花区、上饶市横峰县、昆明市禄劝彝族苗族自治县、宁夏石嘴山市惠农区
东莞市虎门镇、绵阳市盐亭县、齐齐哈尔市克东县、深圳市罗湖区、广西柳州市融安县、扬州市仪征市、九江市柴桑区、邵阳市新邵县
文/庞无忌
今年以来,AI浪潮席卷全球。它不仅催生了热门股票,也愈发深入千行百业。
正在进行的2025年中国国际服务贸易交易会上,毕马威中国数字化赋能及人工智能主管合伙人张庆杰在接受中新社国是直通车专访时表示,AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。
他认为,目前,产业界对AI的应用正在发生变化。企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),成为更经济实用的选择。企业对AI的应用最初主要集中在内部降本增效,但现在则越来越多地直接用于创造新收入来源和商业模式。
现阶段,金融、医疗、制造等领域是AI+重点产业的主战场。这些不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
采访实录摘要如下:
国是直通车:目前很多企业都在谈论AI,AI在产业中的实际应用情况如何?
张庆杰:AI正在各个行业落地生根。虽然不同行业的应用深度和成熟度有所不同,但AI确实在提升效率、优化流程、创造新价值方面发挥着越来越重要的作用。毕马威实践调研发现,AI在产业中的应用呈现出一些特点,主要包括:
场景应用从“单点尝试”到“系统融合”:AI不再仅仅是孤立的应用,而是逐渐融入核心业务流程,并与IT应用系统深度融合。
模型选择关注“大模型”与“小模型”协同:企业不再一味追求大模型。在许多特定场景中,参数更少、专注性更强的小模型(SLM),因为其更低的成本、更快的响应速度和更好的数据隐私保护,成为更经济实用的选择。
应用重点从“提升效率”到“直接变现”:AI的应用最初主要集中在内部降本增效,现在则越来越多地直接用于创造新收入来源和商业模式。
国是直通车:毕马威中国在服贸会期间发布《智能行业-通过AI驱动转型创造价值的蓝图》报告。您认为有什么技术场景是有潜力能够规模化的?
张庆杰:报告里提出了AI价值之旅,即AI的价值实现历经从“赋能”到“融合”再到“演进”的旅程。其中,不少场景潜力巨大,举几个例子:
垂直行业大模型:深入特定行业、解决实际痛点的垂直大模型正成为规模化商业化的重点。例如:医疗领域的AI辅助诊断系统(如肺部CT影像分析),AI驱动的药物研发也能显著缩短研发周期。制造业领域用于优化运维与研发流程。金融与法律领域的智能风控、智能投顾、合同审查、合规预警等场景已非常普遍。
AI Agent(智能体):已从概念验证走向生产环境,开始处理企业核心业务。例如企业服务中的AI客服、AI排班、AI运营等服务,以及制造业的流程自动化、供应链优化、仓储管理等。
多模态融合与生成式AI:正从文本生成向图像、视频、3D模型等多模态内容生成演进,其商业化在内容创作、营销、设计等领域进展迅速。例如:内容产业的AI生成营销文案、图片、视频素材,以及游戏资产生成等。
上述场景开始深入行业肌理,与业务流程系统性结合,创造出可衡量、可感知的商业价值。业界关注这些价值密度高、商业模式清晰、且正加速渗透的领域。
国是直通车:从市场规模来看,您认为AI+重点产业有多大的潜力或者增量空间?
张庆杰:AI+重点产业拥有万亿级增量空间,核心是从“工具赋能”“业务融合”迈向“商业演进”,乃至“生态重塑”。在国务院《关于深入实施“人工智能+”行动的意见》的政策利好下,市场潜力将更凸显,其中,金融、医疗、制造等领域料将是主战场。AI与产业的融合不仅创造新市场(如AI制药),更从旧市场效率提升中挤压出新价值。
AI+重点产业的发展趋势包括几方面:
深度融合:AI从单点应用变为核心驱动,融入全业务流程。
垂直模型崛起:行业小模型因成本、数据安全和专业精度优势,成为企业级应用主流。
实体智能渗透:通过机器人、物联网等技术,AI大规模改造物理世界。
竞争范式转变:从算法竞争转向高质量行业数据与生态构建的竞争。
可信AI优先:安全、合规与可解释性成为核心选型标准。
国是直通车:目前在“AI+”上,哪些行业走在前列?
张庆杰:在“AI+”的浪潮中,金融、制造、医疗、互联网与政务等行业走在前列,其共同特点是数据密集、痛点明确、投资回报率易于衡量。
目前,AI+金融成熟度最高。智能风控、智能投顾、欺诈检测已大规模应用。例如,有解决方案让投顾展业效率提升3倍,智能风控系统普及率超78%,能实时分析交易数据,精准识别欺诈行为。
AI+制造以智能化为核心。其中,AI质检(如轮胎X光检测准确率超97%)、预测性维护、生产流程优化是重点。企业通过数字工厂实现全流程监控与智能排产,显著提升良品率和效率。
AI+医疗正高速增长。AI影像辅助诊断(如肺结节识别)、药物研发、基因分析发展迅速。AI系统诊断错误率较人工降低37%,2025年医疗大模型发布量达133个,加速精准医疗落地。
AI+互联网/电商深度嵌入。智能客服、个性化推荐已成为标配,AI生成营销内容(文案、图片)大幅降低创作成本,提升转化率。
AI+政务与城市治理正在快速普及。“AI数智员工”处理公文,将审核时间缩短90%;智慧交通系统优化信号灯,提升城市通行效率等。
国是直通车:目前“AI+”以及推动产业智能化改造有何瓶颈?
张庆杰:“AI+”与产业智能化改造虽前景广阔,但目前仍面临几个核心瓶颈,制约其大规模落地和深度应用。
数据瓶颈:数据质量差、存在大量噪声与缺失,形成“数据孤岛”;且难以实现“数据-模型-反馈”闭环,制约模型优化。
技术瓶颈:AI研发与算力成本高,传统产业对价格敏感;通用大模型与专业场景适配难,而开发行业小模型需要深厚领域知识;大模型幻觉依然存在,AI“黑箱”特性在工业、医疗等高风险场景面临信任危机。
人才瓶颈:既懂AI又懂行业的复合型人才稀缺。
商业变现与合规瓶颈:除降本外,AI“增收”的商业模式尚不清晰;数据隐私、算法公平性等合规要求日趋严格,尤其在金融、医疗等领域
突破这些瓶颈需多方协同:技术侧需发展高效、可解释的垂直模型;企业侧需加强数据治理并推动组织转型;政策侧应加快标准制定与生态建设。只有打通这些环节,产业智能化才能实现规模化落地。
【编辑:刘湃】