全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

书一保险柜24小时客服报修中心电话

发布时间:
书一保险柜400客服售后报修服务电话热线







书一保险柜24小时客服报修中心电话:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









书一保险柜24小时售服热线(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





书一保险柜快修上门服务

书一保险柜售后维修电话24小时服务









维修过程全程录像,让您对维修过程一目了然。




书一保险柜全国24小时400服务网点









书一保险柜维修上门电话号码查询

 上海市黄浦区、成都市都江堰市、延安市吴起县、牡丹江市爱民区、上海市崇明区、铜仁市江口县、宜昌市西陵区、定西市渭源县、西安市莲湖区、黔南瓮安县





中山市中山港街道、扬州市高邮市、许昌市建安区、镇江市扬中市、安阳市北关区、阳江市阳春市









内江市东兴区、重庆市武隆区、鞍山市海城市、东莞市莞城街道、洛阳市新安县、重庆市垫江县、威海市荣成市、上饶市广信区









烟台市牟平区、泰安市肥城市、万宁市山根镇、榆林市神木市、商丘市夏邑县









滨州市滨城区、荆门市沙洋县、中山市三角镇、太原市迎泽区、莆田市仙游县









怀化市沅陵县、红河开远市、信阳市息县、内蒙古兴安盟科尔沁右翼中旗、内蒙古鄂尔多斯市康巴什区、屯昌县屯城镇









商丘市睢县、邵阳市隆回县、茂名市电白区、芜湖市鸠江区、贵阳市花溪区、宁夏石嘴山市大武口区









铜陵市义安区、中山市阜沙镇、屯昌县屯城镇、周口市扶沟县、大连市沙河口区、漳州市平和县、重庆市开州区、昭通市水富市、广西南宁市江南区









黄山市祁门县、甘孜石渠县、阿坝藏族羌族自治州壤塘县、曲靖市富源县、乐山市井研县、武汉市黄陂区、衢州市江山市、菏泽市牡丹区、贵阳市观山湖区、长沙市芙蓉区









湛江市廉江市、广西河池市罗城仫佬族自治县、沈阳市苏家屯区、安顺市西秀区、朔州市山阴县









漯河市郾城区、白山市长白朝鲜族自治县、福州市仓山区、红河红河县、厦门市海沧区、黔东南锦屏县、三门峡市渑池县、甘孜九龙县









鞍山市铁东区、琼海市会山镇、中山市民众镇、重庆市巫山县、常德市石门县、菏泽市定陶区、内江市隆昌市









文山广南县、南昌市新建区、黔西南贞丰县、凉山盐源县、广西贵港市平南县、荆门市沙洋县、南充市阆中市、六安市霍山县









大同市云州区、南平市建瓯市、延边龙井市、襄阳市襄州区、张家界市永定区、昭通市水富市









重庆市永川区、德阳市广汉市、绵阳市平武县、广西贺州市钟山县、龙岩市新罗区、盐城市响水县、眉山市仁寿县、信阳市罗山县









内蒙古赤峰市林西县、金昌市金川区、盐城市滨海县、内蒙古锡林郭勒盟苏尼特左旗、焦作市温县、乐东黎族自治县莺歌海镇









龙岩市漳平市、安康市紫阳县、定安县龙湖镇、咸阳市礼泉县、绵阳市平武县、泉州市晋江市、淄博市周村区、延安市安塞区、汉中市镇巴县、大连市瓦房店市

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文