全国报修
有问题 必受理
服务流程
拨打电话
线上联系客服
信息加密
安排师傅
最快30分钟
快速响应
上门服务
安心保障

圣非格指纹锁厂家预约热线

发布时间:
圣非格指纹锁总部400售后服务24小时热线电话







圣非格指纹锁厂家预约热线:(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)









圣非格指纹锁全国售后通道(1)400-1865-909(点击咨询)(2)400-1865-909(点击咨询)





圣非格指纹锁客服电话快速响应

圣非格指纹锁全国400网点24小时统一服务总部









维修后设备性能评估与改进建议:我们对维修后设备性能进行评估,并根据评估结果提供改进建议,助力客户优化设备管理。




圣非格指纹锁查询系统









圣非格指纹锁全国统一服务售后电话

 绍兴市新昌县、抚顺市新宾满族自治县、重庆市九龙坡区、西宁市湟源县、丹东市振安区、鄂州市华容区、上海市闵行区、咸宁市崇阳县、内蒙古巴彦淖尔市磴口县、宁夏中卫市沙坡头区





临汾市侯马市、上饶市弋阳县、惠州市博罗县、牡丹江市宁安市、双鸭山市宝清县









辽源市东辽县、楚雄永仁县、济宁市梁山县、曲靖市罗平县、长治市平顺县、宜春市铜鼓县、宣城市宁国市、咸阳市三原县、韶关市曲江区









韶关市新丰县、双鸭山市集贤县、洛阳市洛宁县、黄南泽库县、文昌市蓬莱镇









昭通市大关县、伊春市大箐山县、杭州市下城区、昆明市嵩明县、黄冈市蕲春县









衡阳市石鼓区、台州市黄岩区、榆林市清涧县、雅安市名山区、德宏傣族景颇族自治州芒市、吉安市永丰县、文昌市锦山镇、澄迈县大丰镇、西宁市城西区、东莞市横沥镇









岳阳市华容县、东方市江边乡、七台河市新兴区、广西柳州市柳城县、广西玉林市玉州区、黑河市爱辉区









凉山冕宁县、内蒙古包头市石拐区、嘉峪关市峪泉镇、阿坝藏族羌族自治州松潘县、东莞市虎门镇、直辖县潜江市、定西市通渭县









陇南市成县、湖州市长兴县、马鞍山市和县、苏州市虎丘区、四平市伊通满族自治县









滨州市滨城区、揭阳市揭东区、阜新市细河区、广西南宁市西乡塘区、宁夏银川市金凤区









龙岩市武平县、伊春市友好区、六安市霍山县、内蒙古乌兰察布市化德县、成都市新都区、重庆市奉节县、中山市东升镇、莆田市城厢区、铁岭市开原市









鸡西市城子河区、忻州市宁武县、三门峡市义马市、宜昌市宜都市、营口市站前区









海南同德县、岳阳市湘阴县、定安县翰林镇、绍兴市嵊州市、常德市津市市、琼海市石壁镇、永州市双牌县









攀枝花市盐边县、宝鸡市千阳县、淄博市桓台县、荆州市洪湖市、德州市陵城区、绍兴市柯桥区、长春市九台区









内蒙古赤峰市松山区、烟台市莱山区、广州市海珠区、内蒙古呼和浩特市托克托县、赣州市赣县区









红河石屏县、抚州市南城县、榆林市榆阳区、泸州市合江县、张掖市山丹县、大同市平城区









洛阳市洛龙区、广西来宾市金秀瑶族自治县、凉山德昌县、辽阳市灯塔市、益阳市赫山区、辽源市东丰县、扬州市邗江区、昭通市盐津县、平顶山市湛河区

  中新网北京9月18日电 (记者 孙自法)作为一家专注于大语言模型(LLM)和通用人工智能(AGI)技术的中国公司,DeepSeek(深度求索)今年早些时候发布的开源人工智能(AI)模型DeepSeek-R1采用的大规模推理模型训练方法,颇受关注。

  北京时间9月17日夜间,该训练方法在国际知名学术期刊《自然》上线发表,其揭示AI技术背后的科学研究表明,大语言模型的推理能力可通过纯强化学习来提升,从而减少增强性能所需的人类输入工作量。训练出的模型在数学、编程竞赛和STEM(科学、技术、工程、数学)领域研究生水平问题等任务上,比传统训练的大语言模型表现更好。

  论文通讯作者为DeepSeek创始人梁文锋,他领导的DeepSeek-AI团队表示,让AI模型像人类一样进行推理一直是难题,虽然大语言模型已显示出一些推理能力,但训练过程需要大量计算资源。通过人工提示引导可改进这类模型,促使其生成中间推理步骤,从而大为强化其在复杂任务中的表现。不过,这个方法会导致计算成本过高,并限制其扩展潜力。

  DeepSeek-AI团队介绍说,DeepSeek-R1包含一个在人类监督下的深入训练阶段,以优化推理过程。该模型使用了强化学习而非人类示例来开发推理步骤,从而减少了训练成本和复杂性。DeepSeek-R1在被展示优质的问题解决案例后,会获得一个模板来产生推理过程。这一模型通过解决问题获得奖励,从而强化学习效果。

  在评估AI表现的数学基准测试中,DeepSeek-R1-Zero和DeepSeek-R1得分分别为77.9%和79.8%。此外,该模型在编程竞赛及研究生水平的生物学、物理和化学问题上同样表现优异。

  《自然》同期发表国际同行专家的“新闻与观点”文章指出,当前版本的DeepSeek-R1有一些能力限制,希望能在未来版本中得到改进。例如,该模型有时会混合语言,目前只针对中文和英文做了优化;它对提示词也很敏感,需要精心设计的提示词工程,在某些任务上没有展现出明显提升,例如软件工程任务。

  DeepSeek-AI团队总结认为,未来研究可以聚焦优化奖励过程,以确保推理和任务结果可靠。(完) 【编辑:郑云天】

阅读全文